• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eight-Element Dual-Polarized MIMO Slot Antenna System for 5G Smartphone Applications

Ojaroudi Parchin, Naser, Al-Yasir, Yasir I.A., Ali, Ammar H., Elfergani, Issa T., Noras, James M., Rodriguez, Jonathan, Abd-Alhameed, Raed 02 January 2019 (has links)
Yes / In this paper, we propose an eight-port/four-resonator slot antenna array with a dual-polarized function for multiple-input-multiple-output (MIMO) 5G mobile terminals. The design is composed of four dual-polarized square-ring slot radiators fed by pairs of microstrip-line structures. The radiation elements are designed to operate at 3.6 GHz and are located on the corners of the smartphone PCB. The squarering slot radiators provide good dual-polarization characteristic with similar performances in terms of fundamental radiation characteristics. In order to improve the isolation and also reduce the mutual coupling characteristic between the adjunct microstrip-line feeding ports of the dual-polarized radiators, a pair of circular-ring/open-ended parasitic structures is embedded across each square-ring slot radiator. The −10-dB impedance bandwidth of each antenna-element is 3.4–3.8 GHz. However, for −6-dB impedance bandwidth, this value is 600 MHz (3.3–3.9 GHz). The proposed MIMO antenna offers good S-parameters, high-gain radiation patterns, and sufficient total efficiencies, even though it is arranged on a high-loss FR-4 dielectric. The SAR function and the radiation characteristics of the proposed design in the vicinity of user-hand/userhead are studied. A prototype of the proposed smartphone antenna is fabricated, and good measurements are provided. The antenna provides good features with a potential application for use in the 5G mobile terminals. / This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424. / Research Development Fund Publication Prize Award winner, January 2019.

Page generated in 0.07 seconds