• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

C*-algebras from actions of congruence monoids

Bruce, Chris 20 April 2020 (has links)
We initiate the study of a new class of semigroup C*-algebras arising from number-theoretic considerations; namely, we generalize the construction of Cuntz, Deninger, and Laca by considering the left regular C*-algebras of ax+b-semigroups from actions of congruence monoids on rings of algebraic integers in number fields. Our motivation for considering actions of congruence monoids comes from class field theory and work on Bost–Connes type systems. We give two presentations and a groupoid model for these algebras, and establish a faithfulness criterion for their representations. We then explicitly compute the primitive ideal space, give a semigroup crossed product description of the boundary quotient, and prove that the construction is functorial in the appropriate sense. These C*-algebras carry canonical time evolutions, so that our construction also produces a new class of C*-dynamical systems. We classify the KMS (equilibrium) states for this canonical time evolution, and show that there are several phase transitions whose complexity depends on properties of a generalized ideal class group. We compute the type of all high temperature KMS states, and consider several related C*-dynamical systems. / Graduate

Page generated in 0.133 seconds