• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Period integrals and other direct images of D-modules

Tveiten, Ketil January 2015 (has links)
This thesis consists of three papers, each touching on a different aspect of the theory of rings of differential operators and D-modules. In particular, an aim is to provide and make explicit good examples of D-module directimages, which are all but absent in the existing literature.The first paper makes explicit the fact that B-splines (a particular class of piecewise polynomial functions) are solutions to D-module theoretic direct images of a class of D-modules constructed from polytopes.These modules, and their direct images, inherit all the relevant combinatorial structure from the defining polytopes, and as such are extremely well-behaved.The second paper studies the ring of differential operator on a reduced monomial ring (aka. Stanley-Reisner ring), in arbitrary characteristic.The two-sided ideal structure of the ring of differential operators is described in terms of the associated abstract simplicial complex, and several quite different proofs are given.The third paper computes the monodromy of the period integrals of Laurent polynomials about the singular point at the origin. The monodromy is describable in terms of the Newton polytope of the Laurent polynomial, in particular the combinatorial-algebraic operation of mutation plays an important role. Special attention is given to the class of maximally mutable Laurent polynomials, as these are one side of the conjectured correspondance that classifies Fano manifolds via mirror symmetry. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Accepted. Paper 2: Manuscript. Paper 3: Manuscript.</p>
2

Ideais de anéis de operadores diferenciais / Ideals of rings of differential operators

Tuesta, Napoleon Caro 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements
3

Ideais de anéis de operadores diferenciais / Ideals of rings of differential operators

Napoleon Caro Tuesta 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements
4

Problema de Noether não-comutativo / Noncommutative Noether´s problem

Schwarz, Joao Fernando 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
5

Problema de Noether não-comutativo / Noncommutative Noether´s problem

Joao Fernando Schwarz 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.

Page generated in 0.2058 seconds