• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bacia hidrográfica do Rio Amazonas: contribuição para o enquadramento e preservação

Silva, Maria do Socorro Rocha da 30 August 2013 (has links)
Made available in DSpace on 2015-04-22T19:34:49Z (GMT). No. of bitstreams: 1 maria do socorro.pdf: 6734743 bytes, checksum: 9047ab8c59450536703190381ded2b1b (MD5) Previous issue date: 2013-08-30 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / The present study was conducted in the Amazon River Basin, comprising the states of Amazonas, Roraima, Pará and Rondônia in order to rank the river water types by taking their natural characteristics into account. Two hundred eighty-nine (289), samples were collected from collecting stations placed along the Amazon River and its tributaries, based on class 2 of the CONAMA Resolution No. 357/2005, following the, high, and low water periods from March 2009 to July 2012. The techniques used were potentiometric condutometria, in visible spectrophotometry, mass spectrometry, inductively coupled plasma (ICP) and atomic absorption spectroscopy (A.A). The physical and chemical characteristics of the rivers are heterogeneous, with pH ranging from acid (3.6) to alkaline (7.56), dissolved oxygen from 1.41 mg/L (slightly oxygenated) to 10.00 mg/L (well oxygenated). In the rainy season the water is acidified, with more oxygen and higher levels of turbidity, suspended solids and silica. The waters of the Amazon River basin are bicarbonated and those of Andean origin (main channel of the Amazon River) are calcic. Data was grouped with the aid of descriptive statistics of R, and the natural water type boundaries were determined according to their regional standards. To assess whether there were differences in the types of water within the Amazon basin , we used cluster analysis (HCA), which showed the existence of three regions: a) the one further west that receives the influence of the Andean and pre-Andean rivers with higher electrical conductivity (40.00 to 80.00 μS/cm), pH ranging from slightly acidic to alkaline (values between 6.5 and 7.6) ex. the Amazon River and some tributaries of the right bank; b) the one to the north, influenced by the Guyana Shield, presenting slightly acidic water (pH between 4.6 and 6.5), and conductivity <40.00 μS/cm, such as. the tributaries of the left bank, and c ) a third region that is under the influence of the Brazilian Shield, the water going from slightly acidic to neutral ( pH between 6.0 and 7.0 ), also featuring low ionic charges with conductivity < 40.0 mS / cm, e.g., tributaries of the right bank of the lower Amazon, such as the Tapajós and Xingu. To estimate the natural limits of some variables considered to be critical, such as pH and dissolved oxygen (DO) , we used the median and quartiles ( percentiles, quartiles and deciles), obtaining the following results for each region: rivers of Andean or pre Andean origin presenting pH ranging from 6.03 to 7.23 OD and 2.12 to 6.04 mg / L, while the rivers originating from the Brazilian Shield the pH ranges from 6.16 to 6.94 OD 6.27 and 9.63 mg / L, and rivers that originate in Guyana Shield it showed to be between 4.66 and 6.66, while the outer diameter was between 2.05 and 7.79 mg/L. In addition to the above variables, we also have the natural color, which can reach 170.54 mgPt / L above legislation. Some metals also exceed the limits of Class 2, CONAMA Resolution No. 357/2005, namely: Ba (8.25 mg/L), Cd (0.87 mg/L), Zn (1.40 mg / L), Mn (1.045 mg/L), Al (0.18 mg / L) Ni (0.05 mg/L) Cr (0.17 mg/L) and Cu (0.14 mg/L). The Amazon presents its own regional peculiarities and our big challenge will be to classify, manage and preserve its natural resources along with both large and small watercourses. Considering the Amazon Basin large extent and number of its tributaries, the present study on sub-surface river waters, still shows to be insufficient for determining its regional standards. / O estudo foi realizado na bacia hidrográfica do rio Amazonas, abrangendo os estados do Amazonas, Roraima, Pará e Rondônia com o objetivo de classificar os tipos de água dos rios respeitando suas características naturais, tendo como referência a classe 2 da Resolução CONAMA nº 357/2005. Foram realizadas 289 coletas, sendo 100 ao longo do rio principal ( Amazonas ), com estações a montante e a jusante das principais cidades e 189 em tributários, seguindo o período de águas altas/cheia e águas baixas/estiagem, no período de março de 2009 a julho de 2012. As técnicas usadas foram potenciometria, condutometria, espectofotometria no visível, espectofotometria de massa, Plasma acoplado por indução (ICP) e espectroscopia de absorção atômica (A.A). As características físicas e químicas das águas dos rios são bastante diversificadas, o pH varia de ácido (3,6) a alcalino (7,56), o oxigênio dissolvido oscila entre 1,41 mg/L (pouco oxigenada) a 10,00 mg/L (bem oxigenada). No período chuvoso as águas são mais acidificadas, mais oxigenadas e com valores mais elevados de turbidez, material em suspensão e sílica. As águas da bacia hidrográfica do rio Amazonas são bicabornatadase os de origem andina (calha principal do rio Amazonas) são cálcicas. Os dados foram agrupados com auxílio da estatística descritiva do R e estabelecidas as faixas dos limites naturais dos tipos de água, a princípio, os padrões regionais. Para avaliar se existem diferenças de tipos de água dentro da própria bacia Amazônica, foi utilizada a análise de agrupamento (AHC), ficando evidenciada a existência de três regiões: a) uma mais a oeste recebendo influência das regiões Andina e pré-Andina, rios com maiores valores de condutividade elétrica (40,00 80,00 μS/cm), o pH variando de pouco ácido a alcalino (valores entre 6,5 e 7,6) ex. rio Amazonas e alguns tributários da margem direita; b) uma ao Norte, influenciada pelo Escudo das Guianas, com águas entre ácidas e ligeiramente ácidas (pH entre 4,6 e 6,5), pouco mineralizadas, com condutividade <40,00 μS/cm, ex. os tributários da margem esquerda; e c) uma terceira região que está sob influência do Escudo Brasileiro, indo de águas ligeiramente ácidas a neutras (pH entre 6,0 e 7,0), apresentando também baixas cargas iônicas com condutividade <40,0 μS/cm, ex. tributários da margem direita do baixo Amazonas, como o Tapajós e o Xingu. Para estimar os limites naturais de algumas variáveis consideradas críticas, como o pH e oxigênio dissolvido (OD), foram utilizados a mediana e o quartil (percentil, quartil e decil), obtendo-se os seguintes resultados para cada região: nos rios de origem Andina ou pré-Andina a faixa de pH foi 6,03-7,23 e OD 2,12-6,04 mg/L; já os rios originários no Escudo Brasileiro tiveram o pH na faixa de 6,16 a 6,94 e o OD entre 6,27 e 9,63 mg/L; e os rios que se originam no Escudo das Guianas o pH ficou entre 4,66 e 6,66, estando o OD entre 2,05 e 7,79 mg/L. Além das variáveis acima, temos ainda a cor natural que pode chegar a 170,54 mgPt/L, ultrapassando em muito a legislação. Alguns metais também naturalmente ultrapassam os limites para classe 2, Resolução CONAMA nº 357/2005, são eles: Ba (8,25 mg/L), Cd (0,87 mg/L), Zn (1,40 mg/L), Mn (1,045 mg/L), Al (0,18 mg/L), Ni (0,05 mg/L), Cr (0,17 mg/L) e Cu (0,14 mg/L). Na Amazônia cada região apresenta suas peculiaridades e o grande desafio na gestão destes recursos será o enquadramento dos grandes rios. Considerando a extensão da bacia Amazônica e o grande número de tributários, este estudo nas águas coletadas apenas na sub-superfície dos rios ainda é insuficiente para definir padrões regionais para toda bacia.
2

Realce Automático de Imagens Subaquáticas em Rios da Amazônia

Rodrigues, Daily Daleno de O. 27 February 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-11T20:01:02Z No. of bitstreams: 1 Dissertação-Daily D de O Rodrigues.pdf: 2391223 bytes, checksum: 06b57d0d17da9e4844b2d8482ac25cb0 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-15T18:06:50Z (GMT) No. of bitstreams: 1 Dissertação-Daily D de O Rodrigues.pdf: 2391223 bytes, checksum: 06b57d0d17da9e4844b2d8482ac25cb0 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-15T18:08:28Z (GMT) No. of bitstreams: 1 Dissertação-Daily D de O Rodrigues.pdf: 2391223 bytes, checksum: 06b57d0d17da9e4844b2d8482ac25cb0 (MD5) / Made available in DSpace on 2015-06-15T18:08:28Z (GMT). No. of bitstreams: 1 Dissertação-Daily D de O Rodrigues.pdf: 2391223 bytes, checksum: 06b57d0d17da9e4844b2d8482ac25cb0 (MD5) Previous issue date: 2015-02-27 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / The enhancement of underwater images in applications in the area of Amazonian rivers has been increasingly required and needs further study especially where the rivers have high turbidity and low light. There is increasingly demand for automatic enhancement methods to carry out monitoring of fauna and flora intensive rivers, as well as for the maintenance of pipelines and underwater cables. The enhancement methods specified, developed and validated for using in the rivers of the Amazonia are faced with the problem of imaging quality. The research related to underwater am environments of the Amazon has to dead with high turbidity of the water, caused mainly due to particles in suspension and interaction of light with the environment. The underwater images extraction with satisfiable visibility of the environments of Amazonian rivers has become extremely indispensable and relevant, given that there are natural treasures still unexplored into the depths of these rivers, as well as there is need to maintain the underwater part of the transportation system gas LPG (Liquefied Petroleum Gas) Coari-Manaus. Given this promising scenario, this study aims to improve these images by applying techniques of enhancement using nonlinear filters, which promote the minimization of the light interaction characteristics with the environment, loss of contrast and color in images extracted from turbid underwater environments. The method was experimentally validated with images acquired from simulations of underwater scenes and images acquired in outdoor underwater environments. The proposed method is compared to two other techniques of highlighting or enhancement of images. As in this study, these techniques also require a single image as input. The results return images with enhanced visual quality, considering a large set of experiments with simulation data and real outdoors scenes. / O realce de imagens subaquáticas em aplicações na região dos rios amazônicos é cada vez mais requisitado e carece de um estudo mais aprofundado especialmente nos casos em que os rios apresentam alto índice de turbidez e baixa luminosidade. Estes rios têm demandado cada vez mais métodos de realce automáticos que realizem o monitoramento de sua fauna e flora, bem como manutenção de dutos e cabos subaquáticos. Os métodos de realce especificados, desenvolvidos e validados para uso nos rios da região, se deparam com o problema da qualidade de captação de imagens. As pesquisas relacionadas aos ambientes subaquáticos da Amazônia são prejudicadas pelo alto nível de turbidez de suas águas, causadas principalmente devido às partículas em suspensão e à interação da luz com o meio. A extração de imagens subaquáticas de visibilidade adequada aos ambientes dos rios amazônicos em geral, tem se demonstrado imprescindível e relevante, haja vista que, existem tesouros naturais ainda inexplorados nas profundezas desses rios. Por outro lado, verifica-se a necessidade de manutenção da parte subaquática do sistema de transporte de gás GLP (Gás Liquefeito de Petróleo) Coari-Manaus. Diante deste cenário promissor, este trabalho objetiva a melhoria dessas imagens através da aplicação de técnicas de realce com uso de filtros não lineares, que promovam a minimização das características da interação da luz com o meio, perda de contraste e cores em imagens extraídas de ambientes subaquáticos turvos. O método proposto é comparado a duas outras técnicas de realce ou melhoria de imagens que, como neste trabalho, também requerem uma única imagem como entrada. Os resultados obtidos retornam imagens com melhor qualidade visual, considerando-se um grande conjunto de experimentos realizados com dados de simulação e cenas reais obtidas em ambientes externos.

Page generated in 0.0744 seconds