• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FEEDBACKS of NITROGEN CYCLING and INVASION with the NON-NATIVE PLANT, <italic>MICROSTEGIUM VIMINEUM</Italic>, in RIPARIAN WETLANDS

DeMeester, Julie E. January 2009 (has links)
<p><p>Invasive species are rapidly expanding in riparian wetlands while concurrently anthropogenic causes are increasing nitrogen (N) into these ecosystems. <italic>Microstegium vimineum (Microstegium) </italic> is a particularly abundant invasive grass in the Southeast United States. To evaluate impacts of <italic>Microstegium</italic> on both plant diversity and N cycling in a riparian floodplain, paired plots of <italic>Microstegium</italic> hand-weeded and unweeded were established for three years. Plots without <italic>Microstegium</italic> increased from 4 to 15 species m<super>-2</super> and 90% of the newly establishing species were native. The <italic>Microstegium</italic> community accumulated approximately half the annual N in biomass of the diverse community, 5.04 versus 9.36 g-N m<super>-2</super> year<super>-1</super>, respectively (p=0.05). Decomposition and release of N from <italic>Microstegium</italic> detritus was much less than in the diverse community, 1.19 versus 5.24 g-N m<super>-2</super> year<super>-1</super>. Rates of soil N mineralization estimated by in-situ incubations were relatively similar in all plots. While <italic>Microstegium</italic> invasion appears to greatly diminish within-ecosystem circulation of N through the under-story plants, it might increase ecosystem N losses through enhanced denitrification (due to lower redox potentials under Microstegium plots). Microstegium removal ceased in the fourth growing season and formerly weeded plots increased to 59% (&plusmn; 11% SE) Microstegium cover and species richness decreased to <8 species m<super>-2</super>. </p></p><p><p>To learn how <italic>Microstegium</italic> responds to increased N, we conducted a greenhouse competition experiment between <italic>Microstegium</italic> and four native plants across an N gradient. There was a unique competition outcome in each species combination, yet <italic>Microstegium</italic> was most dominant in the high levels of N. </p></p><p><p>Last, we disturbed a floodplain similar to wetland restoration disturbance and tracked available N. We also established a native community of plants with and without <italic>Microstegium</italic> in three levels of N. Disturbance to the floodplain dramatically increased inorganic N, especially in the form of NO<sub>3</sub> which was five times higher in the disturbed floodplain than the undisturbed floodplain. N levels remained elevated for over a year. <italic>Microstegium</italic> was N responsive, but did not show negative effects to the planted vegetation until the second year. Ironically, restoration activities are increasing available N, and favoring invasive species which in turn detracts from restoration success.</p> / Dissertation
2

Pathogen reduction by created urban riparian wetlands in central Ohio during variable hydrologic conditions

Young, Charissa L. 12 January 2009 (has links)
No description available.
3

HIGH RESOLUTION SENSING OF NITRATE DYNAMICS IN A MIXED-USE APPALACHIAN WATERSHED: QUANTIFYING NITRATE FATE AND TRANSPORT AS INFLUENCED BY A BACKWATER RIPARIAN WETLAND

Jensen, Alexandria Kosoma 01 January 2018 (has links)
As harmful algal blooms begin to appear in unexpected places such as rivers in predominantly forested systems, a better understanding of the nutrient processes within these contributing watersheds is necessary. However, these systems remain understudied. Utilization of high-resolution water quality data applied to deterministic numerical modeling has shown that a 0.42% watershed area backwater riparian wetland along the Ohio River floodplain can attenuate 18.1% of nitrate discharged from local mixed-use watersheds and improves in performance during high loading times due to coinciding increased hydrological connectivity and residence times of water in these wetlands. Loading from the Fourpole Creek watershed was typical for mixed-use systems at 3.3 kgN/ha/yr. The high-resolution data were used to improve boundary condition parameterization, elucidate shortcomings in the model structure, and reduce posterior solution uncertainty. Using high resolution data to explicitly inform the modeling process is infrequently applied in the literature. Use of these data significantly improves the modeling process, parameterization, and reduces uncertainty in a way that would not have been possible with a traditional grab sampling approach.

Page generated in 0.0753 seconds