• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Links between lateral riparian vegetation zones and flow

Reinecke, Michiel Karl 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Riparian vegetation communities that occur along perennial rivers are structured in lateral zones that run parallel to river flow. This dissertation investigated the structure of South African riparian vegetation communities along perennial, single-thread headwater streams. The central assumption was that lateral zones result from differential species’ responses to changing abiotic factors along a lateral gradient up the river bank. It was first necessary to establish the pattern of zones and whether this pattern occurs repetitively and predictably on different rivers in different biomes. Since the flow regime is considered to be the master variable that controls the occurrence of lateral zones, the link between flow as the major abiotic driver and the distribution of plants in zones was determined. Predictions were made with respect to how variable flow may influence phenological traits, particularly with respect to seed dispersal, and physiological tolerances to drying out and were tested. The existence of lateral zones at reference sites in the Western Cape of South Africa was explored and their vegetation characteristics were described. Plant distribution was related to bank slope, as defined by elevation and distance from the wetted channel edge during summer (dry season) low flow, indicating a direct link to river bank hydraulics. Whether or not the same zonation patterns occur in riparian communities in other parts of South Africa was explored next. The four zones described for Fynbos Riparian Vegetation were evident at all of the other rivers tested, despite major differences in geographic location, vegetation community type, climate and patterns of seasonal flow. The four lateral zones could be separated from each other using a combination of flood recurrence and inundation duration. Functional differences were investigated between three tree species that occur in Fynbos Riparian Vegetation. Functional differences were apparent with respect to timing of seed dispersal, growth in branch length versus girth and three physiological measures of tolerance to drying out; specific leaf area (cm2.g-1), wood density (g.cm-3) and levels of carbon isotopes (δ13C). In order to determine the impact of invasive alien plants and to monitor recovery after clearing, the physical rules devised to help delineate zones were used to locate lateral zones that had been obliterated after invasion and subsequent clearing. At the sites invaded by A. mearnsii plants, the zone delineations showed that invasion started in the lower dynamic zone, where adult and sapling A. mearnsii were most abundant. In un-invaded systems, this zone was the least densely vegetated of the four zones, the most varied in terms of inundation duration and the frequency of inter- and intra-annual floods, and was an area of active recruitment comprised mainly of recruiting seedlings and saplings. An understanding of the functional differences between lateral zones was a common thread at each riparian community that was linked to the annual frequency of inundation and the period, when inundated. / AFRIKAANSE OPSOMMING: Oewer plantegroei gemeenskappe wat langs standhoudende riviere voorkom is gestruktureer in laterale sones parallel met die rivier vloei. Hierdie verhandeling ondersoek die struktuur van Suid-Afrikaanse oewer plantegroei gemeenskappe langs standhoudende, enkelloop hoof strome. Die sentrale aanname was dat laterale sones vorm as gevolg van verskillende spesies se reaksie teenoor die verandering van abiotiese faktore teen 'n laterale gradiënt met die rivierbank op. Dit was eers nodig om die patroon van die gebiede vas te stel en uit te vind of hierdie patroon herhaaldelik en voorspelbaar binne verskillende riviere in verskillende biome voorkom. Aangesien die vloeiwyse beskou word as die hoof veranderlike wat die teenwoordigheid van laterale sones beheer, is die skakel tussen die vloei, as die belangrikste abiotiese bestuurder, en die verspreiding van plante in sones bepaal. Voorspellings is gemaak met betrekking tot hoe veranderlike vloei fenologiese eienskappe kan beïnvloed, veral met betrekking tot die saad verspreiding, en fisiologiese toleransie teen uitdroog, en is getoets. Die bestaan van laterale sones binne verwysings studie terreine in die Wes-Kaap van Suid- Afrika is ondersoek en hul plantegroei eienskappe is beskryf. Plant verspreiding was verwant aan bank helling, soos gedefinieer deur hoogte en afstand vanaf die nat kanaal rand gedurende somer (droë seisoen) lae vloei, en dui dus op 'n direkte skakel met die rivier bank hidroulika. Of dieselfde sonering patrone voorkom in oewer gemeenskappe in ander dele van Suid-Afrika is volgende verken. Die vier sones beskryf vir fynbos oewer plantegroei was duidelik by al die ander riviere wat ondersoek is, ten spyte van groot verskille in geografiese ligging, plantegroei gemeenskap tipe, klimaat en patrone van seisoenale vloei. Die vier laterale sones kan onderskei word van mekaar deur middel van 'n kombinasie van vloed herhaling en oorstroomde toestand duur. Funksionele verskille is ondersoek tussen drie boom spesies wat voorkom in Fynbos Oewer Plantegroei. Funksionele verskille was duidelik met betrekking tot tydsberekening van saad verspreiding, groei in tak lengte tenoor omtrek, en drie fisiologiese maatstawwe van verdraagsaamheid teenoor uitdroging; spesifieke blaar area (cm2.g-1), hout digtheid (g.cm-3) en vlakke van koolstof isotope (δ13C). Ten einde die impak van indringerplante te bepaal en die herstel na ontbossing te monitor is die fisiese reëls voorheen vasgestel om sones te help baken gebruik om laterale sones, wat vernietig is na indringing en die daaropvolgende ontbossing, te vind. Op die terreine wat deur A. mearnsii indringerplante binnegeval is, het die indeling van sones getoon dat die indringing begin het in die laer dinamiese sone, waar volwasse en klein A. mearnsii bome die volopste was. In stelsels wat nie binnegeval is deur indringerplante was hierdie sone die minste dig begroei van die vier sones, die mees verskillend in terme van oorstroomde toestand duur en die frekwensie van inter-en intra-jaarlikse vloede, en was 'n gebied van aktiewe werwing hoofsaaklik bestaande uit rekruut saailinge en boompies. 'n Begrip van die funksionele verskille tussen laterale sones was 'n algemene verskynsel by elke oewer gemeenskap wat gekoppel was aan die jaarlikse frekwensie van oorstroming en die oorstroomde toestand duur.
2

Go with the flow - can environmental flows save us? : A study of the flow patterns in Bredforsen and possibilities for the future

Brynjarsdotter, Hilda January 2022 (has links)
Freshwater systems have, during human history, endured large-scale impacts. According to the water framework directive, measures must be developed to create a better environment for species in, and connected to, freshwater systems. Hydropower plants has caused loss of natural disturbance (e.g., floodings). Using already collected data from vegetation inventory in the riparian zone, probable distribution curves were created to find flooding requirements of different plant species, and linear regression analyses were run to see if hours of flooding and elevation above sea level had an effect on species richness and vegetation cover in the riparian zone. A model of Bredforsen 3 was conducted by using modelled values obtained from Vattenfall AB, with the aim to answer the following questions: How is riparian vegetation in mixed alluvial forests in reaches affected by static minimum flow levels structured according to flow dynamics? What would the zonation of riparian vegetation look like in an unregulated situation? How can minimum flow in Bredforsen be designed to better match the flooding regime similar to a natural riparian vegetation? Species richness showed to be dependent on elevation. Furthermore, significant results for species richness and vegetation cover both showed to be dependent on hours of flooding in the riparian zone for two of the three inventoried areas. In the alluvial forest, Picea abies, was not affected by hours of flooding. This might be caused by a low number of replicates available in Bredforsen of P. abies. In contrast, Quercus robur did show a significance towards hours of flooding and a vague negative trend for trees with high inundation distributed on lower elevations, though, it seems more parameters are affecting its distribution. The probable species distribution curves revealed the riparian zone in Bredforsen lack the clear vegetative zones visible along unregulated rivers. However, the model created for Bredforsen 3, following the assumptions of Ström et al. (2012) showed that today two vegetative zones, are apparent in Bredforsen 3 (amphibian zone and upland vegetation). With the modelled flow, a third zone (riparian forest) could appear. Because Bredforsen is a Natura 2000 reserve, the minimum flow needs alteration to mimic a relatively natural flow, which could lead to all vegetative zones to develop (amphibian zone, graminoids, willow shrubs, riparian forest, and upland vegetation). This could be achieved by using the spill water from Söderfors and time the release of spill to natural flow events. The model made from Bredforsen 3 indicates that this could cause positive changes in the riparian zone where a more natural distribution of vegetative zones is in place, meaning that species distribution returns to previous distribution patterns and would help disturbance dependent species.

Page generated in 0.1297 seconds