• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-period value-at-risk scaling rules: calculations and approximations. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Zhou, Pengpeng. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 76-89). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
2

Monte Carlo simulation in risk estimation. / CUHK electronic theses & dissertations collection

January 2013 (has links)
本论文主要研究两类风险估计问题:一类是美式期权价格关于模型参数的敏感性估计, 另一类是投资组合的风险估计。针对这两类问题,我们相应地提出了高效的蒙特卡洛模拟方法。这构成了本文的两个主要部分。 / 第二章是本文的第一部分。在这章中,我们将美式期权的敏感性估计问题提成了更具一般性的估计问题:如果一个随机最优化问题依赖于某些模型参数, 我们该如何估计其最优目标函数关于参数的敏感性。在该问题中, 由于最优决策关于模型参数可能不连续,传统的无穷小扰动分析方法不能直接应用。针对这个困难,我们提出了一种广义的无穷小扰动分析方法,得到敏感性的无偏估计。 我们的方法显示, 在估计敏感性时, 其实并不需要样本路径关于参数的可微性。这是我们在理论上的新发现。另一方面, 该方法可以非常容易的应用于美式期权的敏感性估计。在实际应用中敏感性的无偏估计可以直接嵌入流行的美式期权定价算法,从而同时得到期权价格和价格关于模型参数的敏感性。包括高维问题和多种不同的随机过程模型在内的数值实验, 均显示该估计在计算上具有显著的优越性。最后,我们还从理论上刻画了美式期权的近似最优执行策略对敏感性估计的影响,给出了误差上界。 / 第三章是本文的第二部分。在本章中,我们研究投资组合的风险估计问题。该问题也可被推广成一个一般性的估计问题:如何估计条件期望在作用上一个非线性泛函之后的期望。针对该类估计问题,我们提出了一种多层模拟方法。我们的估计量实际上是一些简单嵌套估计量的线性组合。我们的方法非常容易实现,并且可以被广泛应用于不同的问题结构。理论分析表明我们的方法适用于不同维度的问题并且算法复杂性低于文献中现有的方法。包括低维和高维的数值实验验证了我们的理论分析。 / This dissertation mainly consists of two parts: a generalized infinitesimal perturbation analysis (IPA) approach for American option sensitivities estimation and a multilevel Monte Carlo simulation approach for portfolio risk estimation. / In the first part, we develop efficient Monte Carlo methods for estimating American option sensitivities. The problem can be re-formulated as how to perform sensitivity analysis for a stochastic optimization problem when it has model uncertainty. We introduce a generalized IPA approach to resolve the difficulty caused by discontinuity of the optimal decision with respect to the underlying parameter. The unbiased price-sensitivity estimators yielded from this approach demonstrate significant advantages numerically in both high dimensional environments and various process settings. We can easily embed them into many of the most popular pricing algorithms without extra simulation effort to obtain sensitivities as a by-product of the option price. This generalized approach also casts new insights on how to perform sensitivity analysis using IPA: we do not need pathwise differentiability to apply it. Another contribution of this chapter is to investigate how the estimation quality of sensitivities will be affected by the quality of approximated exercise times. / In the second part, we propose a multilevel nested simulation approach to estimate the expectation of a nonlinear function of a conditional expectation, which has a direct application in portfolio risk estimation problems under various risk measures. Our estimator consists of a linear combination of several standard nested estimators. It is very simple to implement and universally applicable across various problem settings. The results of theoretical analysis show that the algorithmic complexities of our estimators are independent of the problem dimensionality and are better than other alternatives in the literature. Numerical experiments, in both low and high dimensional settings, verify our theoretical analysis. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Yanchu. / "December 2012." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 89-96). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / Abstract in Chinese --- p.iii / Acknowledgements --- p.v / Contents --- p.vii / List of Tables --- p.ix / List of Figures --- p.xii / Chapter 1. --- Overview --- p.1 / Chapter 2. --- American Option Sensitivities Estimation via a Generalized IPA Approach --- p.4 / Chapter 2.1. --- Introduction --- p.4 / Chapter 2.2. --- Formulation of the American Option Pricing Problem --- p.10 / Chapter 2.3. --- Main Results --- p.14 / Chapter 2.3.1. --- A Generalized IPA Approach in the Presence of a Decision Variable --- p.16 / Chapter 2.3.2. --- Unbiased First-Order Sensitivity Estimators --- p.21 / Chapter 2.4. --- Implementation Issues and Error Analysis --- p.23 / Chapter 2.5. --- Numerical Results --- p.26 / Chapter 2.5.1. --- Effects of Dimensionality --- p.27 / Chapter 2.5.2. --- Performance under Various Underlying Processes --- p.29 / Chapter 2.5.3. --- Effects of Exercising Policies --- p.31 / Chapter 2.6. --- Conclusion Remarks and Future Work --- p.33 / Chapter 2.7. --- Appendix --- p.35 / Chapter 2.7.1. --- Proofs of the Main Results --- p.35 / Chapter 2.7.2. --- Likelihood Ratio Estimators --- p.43 / Chapter 2.7.3. --- Derivation of Example 2.3 --- p.49 / Chapter 3. --- Multilevel Monte Carlo Nested Simulation for Risk Estimation --- p.52 / Chapter 3.1. --- Introduction --- p.52 / Chapter 3.1.1. --- Examples --- p.53 / Risk Measurement of Financial Portfolios --- p.53 / Derivatives Pricing --- p.55 / Partial Expected Value of Perfect Information --- p.56 / Chapter 3.1.2. --- A Standard Nested Estimator --- p.57 / Chapter 3.1.3. --- Literature Review --- p.59 / Chapter 3.1.4. --- Summary of Our Contributions --- p.61 / Chapter 3.2. --- The Multilevel Approach --- p.63 / Chapter 3.2.1. --- Motivation --- p.63 / Chapter 3.2.2. --- Multilevel Construction --- p.65 / Chapter 3.2.3. --- Theoretical Analysis --- p.67 / Chapter 3.2.4. --- Further Improvement by Extrapolation --- p.69 / Chapter 3.3. --- Numerical Experiments --- p.72 / Chapter 3.3.1. --- Single Asset Setting --- p.73 / Chapter 3.3.2. --- Multiple Asset Setting --- p.74 / Chapter 3.4. --- Concluding Remarks --- p.77 / Chapter 3.5. --- Appendix: Technical Assumptions and Proofs of the Main Results --- p.79 / Bibliography --- p.89
3

Development of a methodology for identifying effective countermeasures in Regional Safety Management Programs using a Bayesian Safety Assessment Framework (B-SAF)

White, David James 05 1900 (has links)
No description available.
4

A comparison of Bayesian and classical statistical techniques used to identify hazardous traffic intersections

Hecht, Marie B. January 1988 (has links)
The accident rate at an intersection is one attribute used to evaluate the hazard associated with the intersection. Two techniques traditionally used to make such evaluations are the rate-quality technique and a technique based on the confidence interval of classical statistics. Both of these techniques label intersections as hazardous if their accident rate is greater than some critical accident rate determined by the technique. An alternative technique is one based on a Bayesian analysis of available accident number and traffic volume data. In contrast to the two classic techniques, the Bayesian technique identifies an intersection as hazardous based on a probabilistic assessment of accident rates. The goal of this thesis is to test and compare the ability of the three techniques to accurately identify traffic intersections known to be hazardous. Test data is generated from an empirical distribution of accident rates. The techniques are then applied to the generated data and compared based on the simulation results.
5

Prognostic Modeling in the Presence of Competing Risks: an Application to Cardiovascular and Cancer Mortality in Breast Cancer Survivors

Leoce, Nicole Marie January 2016 (has links)
Currently, there are an estimated 2.8 million breast cancer survivors in the United States. Due to modern screening practices and raised awareness, the majority of these cases will be diagnosed in the early stages of disease where highly effective treatment options are available, leading a large proportion of these patients to fail from causes other than breast cancer. The primary cause of death in the United States today is cardiovascular disease, which can be delayed or prevented with interventions such as lifestyle modifications or medications. In order to identify individuals who may be at high risk for a cardiovascular event or cardiovascular mortality, a number of prognostic models have been developed. The majority of these models were developed on populations free of comorbid conditions, utilizing statistical methods that did not account for the competing risks of death from other causes, therefore it is unclear whether they will be generalizable to a cancer population remaining at an increased risk of death from cancer and other causes. Consequently, the purpose of this work is multi-fold. We will first summarize the major statistical methods available for analyzing competing risk data and include a simulation study comparing them. This will be used to inform the interpretation of the real data analysis, which will be conducted on a large, contemporary cohort of breast cancer survivors. For these women, we will categorize the major causes of death, hypothesizing that it will include cardiovascular failure. Next, we will evaluate the existing cardiovascular disease risk models in our population of cancer survivors, and then propose a new model to simultaneously predict a survivor's risk of death due to her breast cancer or due to cardiovascular disease, while accounting for additional competing causes of death. Lastly, model predicted outcomes will be calculated for the cohort, and evaluation methods will be applied to determine the clinical utility of such a model.
6

Statistical analysis of clinical trial data using Monte Carlo methods

Han, Baoguang 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In medical research, data analysis often requires complex statistical methods where no closed-form solutions are available. Under such circumstances, Monte Carlo (MC) methods have found many applications. In this dissertation, we proposed several novel statistical models where MC methods are utilized. For the first part, we focused on semicompeting risks data in which a non-terminal event was subject to dependent censoring by a terminal event. Based on an illness-death multistate survival model, we proposed flexible random effects models. Further, we extended our model to the setting of joint modeling where both semicompeting risks data and repeated marker data are simultaneously analyzed. Since the proposed methods involve high-dimensional integrations, Bayesian Monte Carlo Markov Chain (MCMC) methods were utilized for estimation. The use of Bayesian methods also facilitates the prediction of individual patient outcomes. The proposed methods were demonstrated in both simulation and case studies. For the second part, we focused on re-randomization test, which is a nonparametric method that makes inferences solely based on the randomization procedure used in clinical trials. With this type of inference, Monte Carlo method is often used for generating null distributions on the treatment difference. However, an issue was recently discovered when subjects in a clinical trial were randomized with unbalanced treatment allocation to two treatments according to the minimization algorithm, a randomization procedure frequently used in practice. The null distribution of the re-randomization test statistics was found not to be centered at zero, which comprised power of the test. In this dissertation, we investigated the property of the re-randomization test and proposed a weighted re-randomization method to overcome this issue. The proposed method was demonstrated through extensive simulation studies.

Page generated in 0.1421 seconds