• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Impact of Fine Sediment on Stream Macroinvertebrates in Urban and Rural Oregon Streams

Hoy, Raymond S. 01 January 2001 (has links)
Urbanization, often characterized by high impervious surface area, can result in excessive inputs of fine sediments into urban streams. Excessive fine sediments can blanket the stream bed filling the interstitial space in the substratum, which may have adverse effects on stream biota. A field survey was conducted in Oregon urban and non-urban basins to investigate the relationship between fine sediments and stream macroinvertebrates. Physical, chemical, and biological data were collected from 59 stream sites in two urban and two rural streams. The stream sites fulfilled a continuous sediment gradient, which ranged from a low of 2% of fine sediment in the substrate to a high of 64% with an average of 22%. The % fines, in Clear Creek (rural basin) was significantly lower than in the urban basins (Johnson Creek and Tryon Creek) (p=0.005). Johnson Creek (mean=23%) had approximately three times more fine sediment than Clear Creek (mean=7%), while Tryon Creek (mean=32%) had nearly five times as much fine sediment as Clear Creek. EPT taxa richness was significantly higher in both rural streams than in both urban streams (p0.05). For example, regression analysis of EPT taxa richness vs. % fine sediments displayed a coefficient of determination (r2) value of 0.2. Other macro invertebrates metrics displayed similar patterns. The lack of significant correlations may be due to the cumulative effect of basin-wide "historical land use past". Past land use activity may have resulted in long-term reductions of sensitive taxa in the basin taxa pool and efforts to improve local habitats may not be quickly colonized by pollution sensitive taxa. Long-term degradation to the urban streams resulted in a relatively homogenous assemblage of macro invertebrates, which may have confounded the quantitative relationship between sediments and macroinvertebrates. This study suggests there is a clear difference between urban and non-urban streams in terms of macro invertebrates, which may be likely due to sediments, but the quantitative relationship between fine sediments and macro invertebrates is weak.
2

Sediment reservoir dynamics on steepland valley floors : influence of network structure and effects of inherited ages

Frueh, Walter Terry 05 December 2011 (has links)
Sediment deposit ages inferred from radiocarbon dating of stream bank material were used to estimate residence times of valley-floor deposits in headwater valleys of the Oregon Coast Range, USA. Inherited ages of radiocarbon-dated material, i.e., time between carbon fixation in wood and its incorporation in a sediment deposit, can result in over-estimation of the ages of those deposits and, hence, the residence times of sediment within those units. Calibrated radiocarbon dates of 126 charcoal pieces sampled from Knowles Creek were used to estimate the distribution of inherited ages in fourteen depositional units representing three deposit types: fluvial fines, fluvial gravels, and debris flows. Within a depositional unit, the inherited age distribution of a piece of charcoal was estimated by convolving its calibrated age distribution with that of the piece of charcoal with the smallest weighted-mean calibrated age (i.e., an approximation of a unit's date of deposition) within that unit. All inherited age distributions for a particular deposit type were then added and normalized to provide a probability distribution of inherited ages for that deposit type. Probability distributions of inherited ages average 688, 1506, and 666 yr for fluvial fines, fluvial gravels, and debris flow units, respectively. Curves were fit to inherited age distributions for each deposit type. These curve fits were then convolved with deposit age distributions (i.e., equal to calibrated age distributions of woody material sampled from stream banks) of samples from Bear Creek (Lancaster and Casebeer, 2007) to correct these deposit ages for inherited age. This convolution gives a corrected deposit age. In cases in which means of corrected deposit age distributions for an upper unit were older than those of a lower unit within a stratigraphic column, the upper sample’s corrected deposit age distribution was set to that of the youngest lower in the stratigraphic section. Convolution shifted individual deposit age distributions towards zero and increased their standard deviation by an average of 365%. However, convolution decreased the standard deviations of normalized probability distribution functions of deposit ages inferred from many samples from 1340 to 1197 yr, and from 471 to 416 yr for lower and upper reaches, respectively, of the Bear Creek valley in the Oregon Coast Range. Convolution decreased estimates of mean deposit ages from 1296 to 1051 yr, and from 308 to 245 yr for lower and upper reaches, respectively, of the Bear Creek. Estimates of percentages of basin denudation passing through each reach's deposit ("trapping efficiency") increased from 11.6% to 14.4%, and from 25.4% to 31.9% for lower and upper Bear Creek, respectively. However, basic shapes of residence time distributions and, thus, inferences regarding removal of sediment from the reaches did not change after deposit dates were corrected. Sediment residence times in the lower Bear Creek valley are exponentially distributed, which implies that all sediment has a uniform probability of evacuation from deposits, whereas the power-law-distributed residence times in upper Bear imply preferential evacuation of younger deposits and preservation of older deposits. Much of the sediment transported onto valley floors via debris flows is deposited, and then is evacuated over longer times. Volumes and residence times of stored sediment in these deposits at the transition from debris flow to fluvial evacuation, and their associated width of valley floors, vary throughout a network. Export volumes and frequencies from tributaries are controls on deposit volumes and may control valley widening of mainstem valley floors. In addition, closely spaced tributaries may exert composite effects on valley floor landforms. It is hypothesized that the volumes of sediment stored at confluences increases with contributing watershed area of tributaries to the point where tributary slopes are low enough to cause most debris flows to be deposited within tributary valleys instead of in the mainstem valley. In four ~1 km reaches with contributing watershed areas of 0.3 to 5.0 km², field surveys provided measures of width of valley floors and volume of deposits, and radiocarbon dating of charcoal provided residence times of sediment in these deposits. Mean residence times of reaches vary between 1.1 and 2.5 kyr. Exponential distributions fit to residence times within two of the reaches imply evacuation of sediment independent of deposit ages. Power-law fits to residence times of the other two reaches imply age-dependent evacuation of deposits. Distribution shapes of residence times, and their means, do not vary systematically with contributing watershed area of mainstems. Mean width of mainstem valley floors increases with contributing watershed areas of both mainstems and their respective tributaries. Volumes of sediment stored on the valley floor increase with contributing areas of mainstems, and these volumes at tributary junctions peaked at tributary contributing areas of ~0.1 km². Percentage of basin denudation entering storage decreases with contributing area of mainstem. This decrease may be due to increasing percentages of sediment supply via fluvial transport for larger watersheds, and much, if not most, of this supply routes through the system quickly. / Graduation date: 2012
3

Effects of Selective Logging and Roads on Instream Fine Sediments and Macroinvertebrate Assemblages in the Clackamas Basin, Oregon

Hood, Paula Elizabeth 19 May 2015 (has links)
Logging and associated skid trails, haul routes, and roads can have significant impacts on the magnitude and timing of sediments in streams in forested watersheds. Loss of vegetation, soil compaction, use of heavy logging equipment, and alteration of natural hydrologic patterns within the watershed can increase landslide rates, create erosion, and generate fine sediments. Selective logging, also called thinning, is a logging practice that leaves some trees within sale units unharvested. The ecological impacts of thinning on stream ecosystems are not fully understood and need further study. My hypothesis was that macroinvertebrate assemblages would be different in streams in non-reference areas that contain recent selective logging compared to streams in reference areas, and in downstream vs. upstream of selective logging units. I also hypothesized that selective logging and high road densities would be associated with increased instream fine sediments. I sampled water quality parameters and macroinvertebrates in three managed and three reference streams in the Clackamas River Basin during the field season of 2013. Turbidity, temperature, dissolved oxygen, conductivity, total dissolved solids (TDS), suspended sediment concentrations (SSC), and flow were sampled at each stream on four occasions during spring through early fall. Macroinvertebrates were sampled once in late summer or early fall. EPA rapid habitat assessments, canopy cover, pebble counts, embeddedness, and slope were also determined. Water quality parameters and macroinvertebrate indices in reference and non-reference sites were compared using t-tests, Welch's tests, or rank based equivalents. Macroinvertebrate assemblage patterns and associated environmental variables were characterized using non-metric multidimensional scaling (NMDS) ordination plots and envfit overlays. Macroinvertebrates had higher abundance and taxa richness in non-reference streams, and indices suggested poorer water quality in non-reference streams. Non-reference streams had a lower percentage of shredders and a higher portion of gatherer-collectors. Associations between land use, fine sediments, and changes in macroinvertebrate metrics and community assemblages were apparent at the reference vs. non-reference scale. It is likely that macroinvertebrates are responding, at least in part, to past logging and high road densities in non-reference streams. Fewer indications were found that recent logging may be affecting water quality and macroinvertebrates. Pearson's correlation coefficients show that the percent of recent logging upstream of study sites was correlated with several measures of fine sediments, suggesting that recent land use may be affecting sediment levels at the subwatershed scale. Stream temperatures increased from upstream to downstream in non-reference sites. Though no continual stream temperature data were collected in this study, the history of continuing temperature standard exceedances in the area suggest that further investigation of how selective logging may be affecting stream temperature and other water quality parameters in the Clackamas Basin is warranted. No other differences in water quality parameters were found from upstream to downstream, possibly because water quality was sufficiently protected, or because signals from land use impacts may be obscured by a several factors, including upstream confounding factors such as roads and past logging, and natural variability.

Page generated in 0.083 seconds