• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hardware Accelerated Particle Filter for Lane Detection and Tracking in OpenCL

Madduri, Nikhil January 2014 (has links)
A road lane detection and tracking algorithm is developed, especially tailored to run on high-performance heterogeneous hardware like GPUs and FPGAs in autonomous road vehicles. The algorithm was initially developed in C/C++ and was ported to OpenCL which supports computation on heterogeneous hardware.A novel road lane detection algorithm is proposed using random sampling of particles modeled as straight lines. Weights are assigned to these particles based on their location in the gradient image. To improve the computation efficiency of the lane detection algorithm, lane tracking is introduced in the form of a Particle Filter. Creation of the particles in lane detection step and prediction, measurement updates in lane tracking step are computed parellelly on GPU/FPGA using OpenCL code, while the rest of the code runs on a host CPU. The software was tested on two GPUs - NVIDIA GeForce GTX 660 Ti &amp; NVIDIA GeForce GTX 285 and an FPGA - Altera Stratix-V, which gave a computational frame rate of up to 104 Hz, 79 Hz and 27 Hz respectively. The code was tested on video streams from five different datasets with different scenarios of varying lighting conditions on the road, strong shadows and the presence of light to moderate traffic and was found to be robust in all the situations for detecting a single lane. / <p>Validerat; 20140128 (global_studentproject_submitter)</p>
2

Monitorování dopravní situace s využitím Raspberry PI / Traffic monitoring using Raspberry PI

Zacpal, Michal January 2015 (has links)
This thesis describes the design and subsequent implementation of a unit for traffic monitoring using Raspberry PI. First section provides a quick overview of assistance systems, which use a road lane detection techniques. Next there is a description of two diferent methods for road lane detection. Follow the description of monitoring scene. Then the work describe the practical part including the design and realization of supporting electronics, selecting of each components, including the modifying of cameras, mechanical design and creating of unit. Another section is about selection and installation of appropriate software components necessary for running of the unit and the selection of development tools for creating user application. After description of graphical user interafce, there is a description of road lanes detection algorithm. At the end of the thesis is summarized a reliability of unit in real traffic situation. At the appendix there are technical drawings, describing the unit.

Page generated in 0.0874 seconds