• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modal Analysis of a Discrete Tire Model and Tire Dynamic Response Rolling Over Short Wavelength Road Profiles

Alobaid, Faisal 19 September 2022 (has links)
Obtaining the modal parameters of a deflected and rolling tire represents a challenge due to the complex vibration characteristics that cause the tire's symmetry distortion and the natural frequencies' bifurcation phenomena. The modal parameters are usually extracted using a detailed finite element model. The main issue with full modal models (FEA, for example) is the inability to integrate the tire modal model with the vehicle models to tune the suspension system for optimal ride comfort. An in-plane rigid–elastic-coupled tire model was used to examine the 200 DOF finite difference method (FDM) modal analysis accuracy under non-ground contact and non-rotating conditions. The discrete in-plane rigid–elastic-coupled tire model was modified to include the contact patch restriction, centrifugal force, Doppler, and Coriolis effects, covering a range of 0-300 Hz. As a result, the influence of the contact patch and the rotating tire conditions on the natural frequencies and modes were obtained through modal analysis. The in-plane rigid–elastic-coupled modal model with varying conditions was created that connects any two DOFs around the tire's tread or sidewall as inputs or outputs. The vertical movement of the wheel was incorporated into the in-plane rigid–elastic-coupled tire modal model to extract the transfer function (TF) that connects road irregularities as an input to the wheel's vertical movement as an output. The TF was utilized in a quasi-static manner to obtain the tire's enveloping characteristics rolling over short wavelength obstacles as a direct function of vertical wheel displacement under varying contact patch length constraints. The tire modal model was implemented with the quarter car model to obtain the vehicle response rolling over short wavelength obstacles. Finally, a sensitivity analysis was performed to examine the influence of tire parameters and pretension forces on natural frequencies. / Doctor of Philosophy / The goal of vehicle manufacturers is to predict the vehicle's behavior under various driving conditions using mathematical models and simulation. Automotive companies rely heavily on computational simulation tools instead of real-time tests to shorten the product development cycle and reduce costs. However, the interaction between the tire and the road is one of the most critical aspects to consider when evaluating automobile stability and performance. The tires are responsible for generating the forces and moments that drive and maneuver the vehicle. Tires are complex products due to their intricate design, and their characteristics are affected by many factors such as vertical load, inflation pressure, speed, and a road with an uneven surface profile. Consequently, this project aims to describe the influence of various driving circumstances and load conditions on tire properties, as well as to develop a model that can represent the vertical tire and vehicle behavior while traveling over a cleat under different vehicle loads.
2

Assessment of optimal suspension systems with regards to ride under different road profiles / Bedömning av optimala fjädringssystem med avseende på komfort vid körning på olika vägprofiler

Murali, Adithya, Vaje, Pratik Hindraj January 2021 (has links)
Passenger ride vibration comfort is a critical aspect to consider while developing any vehicle and there is a need to understand how the occupants would be affected when driving on different road profile roughness. Hence, road profile generation is critical as road profiles are used as inputs to simulation tools to investigate vehicle dynamic behaviour in depth. At the same time, the optimisation of the vehicle characteristics can be conducted on the various road profiles in order to identify a solution that can provide enhanced ride comfort and improve vehicle handling for all the investigated road profiles. The objective of this thesis is to study ride vibrational comfort and optimise the suspension system for theNational Electric Vehicle Sweden (NEVS) vehicle model for better ride comfort and road holding. Synthetic road profiles are generated by using stochastic processes according to International Organization for Standardization (ISO) 8608 standards. Further, simulations are conducted in MSC ADAMS Car software using the generated synthetic road profiles for a rigid body NEVS vehicle model to study the vertical accelerations. The analysis includes the investigations of the acceleration Power Spectral Density (PSD) and observations are made on the peaks that appear (at Front Seat Rail (FSR) which is the sprung mass of the vehicle and Wheel centre (WC) which is the un-sprung mass of the vehicle) for different road types and vehicle velocities. It is decided that the comfort objective will be used considering the weighted Root Mean Square (RMS) accelerations. Further, the suspension system of the vehicle model is optimised for three different road profiles (A, B, and C) based on the objectives of ride comfort and handling using a suitable vehicle model with the same characteristics as theNEVScar. A multi-objective optimisation technique is used and the optimised results are observed and discussed. Optimal objectives (based on a compromise between ride comfort and road holding) for the suspension system are determined for each investigated road profile. / Vibrationskomfort för passagerare är en kritisk aspekt att tänka på när man utvecklar ett fordon och det finns ett behov av att förstå hur passagerarna kan påverkas när de åker på olika vägprofiler. Därför är vägprofilgenerering avgörande eftersom vägprofiler används som input till simuleringsverktyg för att undersöka fordonets dynamiska beteende. Samtidigt kan optimeringen av fordonets egenskaper utföras på de olika vägprofilerna för att identifiera en lösning som kan ge ökad åkkomfort och förbättra fordonshanteringen för alla undersökta vägprofiler. Syftet med detta examensarbete är att studera körvibrationskomfort och optimera fjädringssystemet för NEVS fordonsmodellen för bättre åkkomfort och väghållning. Syntetiska vägprofiler genereras genom att använda stokastiska processer enligt ISO 8608 standarder. Dessutom utförs simuleringar i MSC ADAMS programvara med hjälp av de genererade syntetiska vägprofilerna för en stelkropps NEVS fordonsmodell för att studera de vertikala accelerationerna. Analysen inkluderar undersökningar av accelerations PSD och observationer görs av topparna som visas (vid FSR och WC) för olika vägtyper och fordonshastigheter. Det beslutas att komfortmålet kommer att utvärderas med hänsyn till endast de vägda RMS accelerationerna. Dessutom är fordonsmodellens hjul upphängningssystem optimerat för tre olika vägprofiler (A, B och C) baserat på målen för åkkomfort och väghållning med hjälp av en lämplig fordonsmodell med samma egenskaper som NEVS bilen. En multi-purpose optimeringsteknik används och de optimerade resultaten observeras och diskuteras. Optimala mål (baserat på en kompromiss mellan åkkomfort och väghållning) för fjädringssystemet bestäms för varje undersökt vägprofil.

Page generated in 0.0516 seconds