Spelling suggestions: "subject:"roadway bnetwork"" "subject:"roadway conetwork""
1 |
Network Roadway Surface Friction and Its Usage to Improve Safety and Project Performance along West Virginia HighwaysMusick, Ryland Wayne Jr. 17 December 2019 (has links)
Roadway surface friction along the West Virginia Division of Highways' roadway network is key to the safety of all traveling motorists. Being geographically located in the rugged Appalachian Mountains, the West Virginia Division of Highways' roadway network is flooded with innumerable geometric and design challenges, causing drivers to have to exercise the most care and attention when navigating the network.
This dissertation introduces the concept of roadway surface friction management to this network. For decades, roadway surface friction has only been tested and checked on an as-needed basis at crash sites and intersections, in legal situations, and pavement acceptance on construction projects. It also seeks to use the acquired data through a case study to insure proper methodology of roadway surface friction management, to develop sample safety performance functions and best crash estimates, and to apply this decision-making data to provide assistance and guidance in the selection of projects in the West Virginia Highway Safety Improvement Program.
This dissertation follows the manuscript format and is composed of three papers. The first chapter of the dissertation examines the usage of Method 3 of the AASHTO Guide for Pavement Friction and the modifications to this method to collect existing roadway surface friction data along the District Ten portion of the network.
The second chapter of the dissertation discusses the development of sample safety performance functions to estimate the average number of crashes along each of the tested roadway categories: Interstate Routes, United States Routes, and West Virginia Routes. It also discussed the development of best crash estimates using the Empirical Bayes Method. This is essential to be able to forecast how crash counts should improve, given the application of various roadway improvements.
The third and final chapter of the dissertation develops the case study based on the District Ten portion of the network and shows how to enhance project selection in the West Virginia Highway Safety Improvement Program. This is completed by applying the safety performance functions and best crash estimates from the second chapter to arrive at real friction numbers for the network and their project impacts. / Doctor of Philosophy / Roadway surface friction along the West Virginia Division of Highways' roadway network is key to the safety of all traveling motorists. Being geographically located in the rugged Appalachian Mountains, the West Virginia Division of Highways' roadway network is flooded with innumerable geometric and design challenges, causing drivers to have to exercise the most care and attention when navigating the network.
This dissertation introduces the concept of roadway surface friction management to this network. For decades, roadway surface friction has only been tested and checked on an as-needed basis at crash sites and intersections, in legal situations, and pavement acceptance on construction projects. It also seeks to use the acquired data through a case study to insure proper methodology of roadway surface friction management, to develop sample safety performance functions and best crash estimates, and to apply this decision-making data to provide assistance and guidance in the selection of projects in the West Virginia Highway Safety Improvement Program.
This dissertation follows the manuscript format and is composed of three papers. The first chapter of the dissertation examines the usage of Method 3 of the AASHTO Guide for Pavement Friction and the modifications to this method to collect existing roadway surface friction data along the District Ten portion of the network.
The second chapter of the dissertation discusses the development of sample safety performance functions to estimate the average number of crashes along each of the tested roadway categories: Interstate Routes, United States Routes, and West Virginia Routes. It also discussed the development of best crash estimates using the Empirical Bayes Method. This is essential to be able to forecast how crash counts should improve, given the application of various roadway improvements.
The third and final chapter of the dissertation develops the case study based on the District Ten portion of the network and shows how to enhance project selection in the West Virginia Highway Safety Improvement Program. This is completed by applying the safety performance functions and best crash estimates from the second chapter to arrive at real friction numbers for the network and their project impacts.
|
2 |
Rating Rockfall Hazard in TennesseeCain, Samuel Franklin 29 June 2004 (has links)
Rockfall from rock slopes adjacent to roadways is a major hazard and poses a problem for transportation agencies across the country. The state of Tennessee has implemented the Tennessee Rockfall Management System (RMS) as a means of reducing the liabilities associated with rockfall hazard. It utilizes digital data acquisition via PDAs coupled with distribution via an expandable web-based GIS database. The Tennessee Rockfall Hazard Rating System (RHRS) is part of the Tennessee RMS and assigns a numeric hazard rating according relative hazard for all slopes identified as having a high potential for delivering rock blocks onto Tennessee Department of Transportation maintained roadways. The Tennessee RHRS uses standard rock slope failure mechanisms (planar failure, wedge failure, topple failure, differential weathering, and raveling) along with the site and roadway geometry to assess the rockfall hazard of an individual slope. This study suggests methods that will expedite fieldwork, including an informational guide on how to properly identify individual failure mechanisms in the field. Also, the study examines the current method of scoring abundance and suggests an alternative, multiplicative approach. The alternative of using a multiplicative abundance is considered and its results summarized. / Master of Science
|
Page generated in 0.0414 seconds