• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of Neural Controllers for Robot Teams

Aronsson, Claes January 2002 (has links)
<p>This dissertation evaluates evolutionary methods for evolving cooperative teams of robots. Cooperative robotics is a challenging research area in the field of artificial intelligence. Individual and autonomous robots may by cooperation enhance their performance compared to what they can achieve separately. The challenge of cooperative robotics is that performance relies on interactions between robots. The interactions are not always fully understood, which makes the designing process of hardware and software systems complex. Robotic soccer, such as the RoboCup competitions, offers an unpredictable dynamical environment for competing robot teams that encourages research of these complexities. Instead of trying to solve these problems by designing and implement the behavior, the robots can learn how to behave by evolutionary methods. For this reason, this dissertation evaluates evolution of neural controllers for a team of two robots in a competitive soccer environment. The idea is that evolutionary methods may be a solution to the complexities of creating cooperative robots. The methods used in the experiments are influenced by research of evolutionary algorithms with single autonomous robots and on robotic soccer. The results show that robot teams can evolve to a form of cooperative behavior with simple reactive behavior by relying on self-adaptation with little supervision and human interference.</p>
2

Evolution of Neural Controllers for Robot Teams

Aronsson, Claes January 2002 (has links)
This dissertation evaluates evolutionary methods for evolving cooperative teams of robots. Cooperative robotics is a challenging research area in the field of artificial intelligence. Individual and autonomous robots may by cooperation enhance their performance compared to what they can achieve separately. The challenge of cooperative robotics is that performance relies on interactions between robots. The interactions are not always fully understood, which makes the designing process of hardware and software systems complex. Robotic soccer, such as the RoboCup competitions, offers an unpredictable dynamical environment for competing robot teams that encourages research of these complexities. Instead of trying to solve these problems by designing and implement the behavior, the robots can learn how to behave by evolutionary methods. For this reason, this dissertation evaluates evolution of neural controllers for a team of two robots in a competitive soccer environment. The idea is that evolutionary methods may be a solution to the complexities of creating cooperative robots. The methods used in the experiments are influenced by research of evolutionary algorithms with single autonomous robots and on robotic soccer. The results show that robot teams can evolve to a form of cooperative behavior with simple reactive behavior by relying on self-adaptation with little supervision and human interference.
3

Robotický stolní fotbal - herní strategie / Robotic table football - game strategy

Parák, Roman January 2017 (has links)
The aim of the master's thesis is the robotic table football device modification and the design of game strategies. The thesis was extended by the design of technology for the robotic table football safety and the design of the Human Machine Interface (HMI). In the introduction so far developed solutions and presentation of the B&R Automation company are described. The following chapters describe mechanical solution modification, electrical wiring diagram design, creating simulation in the MATLAB development environment, resolving security issues and the subsequent application of a solution into the robotic table football. The conclusion of the thesis is devoted to the visualization interface design.

Page generated in 0.0411 seconds