• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A discrete-time robust extended kalman filter for estimation of nonlinear uncertain systems

Kallapur, Abhijit, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2009 (has links)
This thesis provides a novel approach to the problem of state estimation for discrete-time nonlinear systems in the presence of large model uncertainties. Though classical nonlinear Kalman filters such as the extended Kalman filter (EKF) can handle uncertainties by increasing the value of noise covariances, this is only applicable to systems with small uncertainties. To this end, a discretetime robust extended Kalman filter (REKF) is formulated and applied to examples from the fields of aerospace engineering and signal processing with an emphasis on attitude estimation for small unmanned aerial vehicles (UAVs) and image processing under the influence of atmospheric turbulence. The robust filter is an approximate set-valued state estimator where the Riccati and filter equations are obtained as an approximate solution to a reverse-time optimal control problem defining the set-valued state estimator. The advantages of the REKF over the classical EKF are investigated for examples from the fields aerospace engineering and signal processing where large model uncertainties are introduced. In the case of small UAVs, an alternative attitude estimation algorithm based on the REKF is proposed in the event of gyroscopic failure and the inability of the vehicle to carry redundant sensors due to limited payload capabilities. In the case of image reconstruction under atmospheric turbulence, a robust pixel-wandering (random shifts) scheme is proposed to aid the process of image reconstruction. Also, problems pertaining to platform vibration analysis for aerospace vehicles and a frequency demodulation process in the presence of channel-induced uncertainties is also discussed.

Page generated in 0.0929 seconds