• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Algorithms for Mining Large Spatio-Temporal Data

Chen, Feng 21 January 2013 (has links)
Knowledge discovery on spatio-temporal datasets has attracted<br />growing interests. Recent advances on remote sensing technology mean<br />that massive amounts of spatio-temporal data are being collected,<br />and its volume keeps increasing at an ever faster pace. It becomes<br />critical to design efficient algorithms for identifying novel and<br />meaningful patterns from massive spatio-temporal datasets. Different<br />from the other data sources, this data exhibits significant<br />space-time statistical dependence, and the assumption of i.i.d. is<br />no longer valid. The exact modeling of space-time dependence will<br />render the exponential growth of model complexity as the data size<br />increases. This research focuses on the construction of efficient<br />and effective approaches using approximate inference techniques for<br />three main mining tasks, including spatial outlier detection, robust<br />spatio-temporal prediction, and novel applications to real world<br />problems.<br /><br />Spatial novelty patterns, or spatial outliers, are those data points<br />whose characteristics are markedly different from their spatial<br />neighbors. There are two major branches of spatial outlier detection<br />methodologies, which can be either global Kriging based or local<br />Laplacian smoothing based. The former approach requires the exact<br />modeling of spatial dependence, which is time extensive; and the<br />latter approach requires the i.i.d. assumption of the smoothed<br />observations, which is not statistically solid. These two approaches<br />are constrained to numerical data, but in real world applications we<br />are often faced with a variety of non-numerical data types, such as<br />count, binary, nominal, and ordinal. To summarize, the main research<br />challenges are: 1) how much spatial dependence can be eliminated via<br />Laplace smoothing; 2) how to effectively and efficiently detect<br />outliers for large numerical spatial datasets; 3) how to generalize<br />numerical detection methods and develop a unified outlier detection<br />framework suitable for large non-numerical datasets; 4) how to<br />achieve accurate spatial prediction even when the training data has<br />been contaminated by outliers; 5) how to deal with spatio-temporal<br />data for the preceding problems.<br /><br />To address the first and second challenges, we mathematically<br />validated the effectiveness of Laplacian smoothing on the<br />elimination of spatial autocorrelations. This work provides<br />fundamental support for existing Laplacian smoothing based methods.<br />We also discovered a nontrivial side-effect of Laplacian smoothing,<br />which ingests additional spatial variations to the data due to<br />convolution effects. To capture this extra variability, we proposed<br />a generalized local statistical model, and designed two fast forward<br />and backward outlier detection methods that achieve a better balance<br />between computational efficiency and accuracy than most existing<br />methods, and are well suited to large numerical spatial datasets.<br /><br />We addressed the third challenge by mapping non-numerical variables<br />to latent numerical variables via a link function, such as logit<br />function used in logistic regression, and then utilizing<br />error-buffer artificial variables, which follow a Student-t<br />distribution, to capture the large valuations caused by outliers. We<br />proposed a unified statistical framework, which integrates the<br />advantages of spatial generalized linear mixed model, robust spatial<br />linear model, reduced-rank dimension reduction, and Bayesian<br />hierarchical model. A linear-time approximate inference algorithm<br />was designed to infer the posterior distribution of the error-buffer<br />artificial variables conditioned on observations. We demonstrated<br />that traditional numerical outlier detection methods can be directly<br />applied to the estimated artificial variables for outliers<br />detection. To the best of our knowledge, this is the first<br />linear-time outlier detection algorithm that supports a variety of<br />spatial attribute types, such as binary, count, ordinal, and<br />nominal.<br /><br />To address the fourth and fifth challenges, we proposed a robust<br />version of the Spatio-Temporal Random Effects (STRE) model, namely<br />the Robust STRE (R-STRE) model. The regular STRE model is a recently<br />proposed statistical model for large spatio-temporal data that has a<br />linear order time complexity, but is not best suited for<br />non-Gaussian and contaminated datasets. This deficiency can be<br />systemically addressed by increasing the robustness of the model<br />using heavy-tailed distributions, such as the Huber, Laplace, or<br />Student-t distribution to model the measurement error, instead of<br />the traditional Gaussian. However, the resulting R-STRE model<br />becomes analytical intractable, and direct application of<br />approximate inferences techniques still has a cubic order time<br />complexity. To address the computational challenge, we reformulated<br />the prediction problem as a maximum a posterior (MAP) problem with a<br />non-smooth objection function, transformed it to a equivalent<br />quadratic programming problem, and developed an efficient<br />interior-point numerical algorithm with a near linear order<br />complexity. This work presents the first near linear time robust<br />prediction approach for large spatio-temporal datasets in both<br />offline and online cases. / Ph. D.
2

Robust Prediction of Large Spatio-Temporal Datasets

Chen, Yang 24 May 2013 (has links)
This thesis describes a robust and efficient design of Student-t based Robust Spatio-Temporal Prediction, namely, St-RSTP, to provide estimation based on observations over spatio-temporal neighbors. It is crucial to many applications in geographical information systems, medical imaging, urban planning, economy study, and climate forecasting. The proposed St-RSTP is more resilient to outliers or other small departures from model assumptions than its ancestor, the Spatio-Temporal Random Effects (STRE) model. STRE is a statistical model with linear order complexity for processing large scale spatiotemporal data. However, STRE has been shown sensitive to outliers or anomaly observations. In our design, the St-RSTP model assumes that the measurement error follows Student's t-distribution, instead of a traditional Gaussian distribution. To handle the analytical intractable inference of Student's t model, we propose an approximate inference algorithm in the framework of Expectation Propagation (EP). Extensive experimental evaluations, based on both simulation and real-life data sets, demonstrated the robustness and the efficiency of our Student-t prediction model compared with the STRE model. / Master of Science

Page generated in 0.0832 seconds