Spelling suggestions: "subject:"bobust control ."" "subject:"arobust control .""
31 |
An investigation on the application of nonlinear robust adaptive control theory in AC/DC power systemsPoon, Kai-yin, Kenny. January 2007 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.
|
32 |
ARTS : agent-oriented robust transactional system /Wang, Mingzhong. January 2009 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Computer Science and Software Engineering, 2009. / Typescript. Includes bibliographical references (p. 179-198)
|
33 |
Multimedia data transmission for mobile wireless applicationsWu, Min, January 2005 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2005. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (November 14, 2006) Vita. Includes bibliographical references.
|
34 |
Control of Multigenerators for the All-Electric ShipBaez Rivera, Yamilka Isabel 30 April 2011 (has links)
The next generation of U.S. Navy ships will see the integration of the propulsion and electrical systems as part of the all-electric ship. This new architecture brings advantages and challenges. One of the challenges is to develop a stable power system that can ride through various issues such as faults or changes in load. style='mso-spacerun:yes'> While terrestrial systems have been studied for a long time related to stability, the unique characteristics of the shipboard power system mean that not all of these results are directly applicable to the all-electric ship. Because of the new shipboard power system structure, more generators are required to be connected in parallel to supply the power needed. Control of parallel generators has been done for years in terrestrial systems; however, the application of an advanced control technique has not been applied in the All-Electric Ship. The challenge is to apply an advanced control technique to the all-electric shipboard power system that will maintain stability of multiple generator systems, keeping in mind that the generators could be dissimilar in ratings. style='mso-spacerun:yes'> For that reason, the control techniques used to solve the problem need to be developed or adapted for test cases that are similar to the electric ship configuration. This dissertation provides a description of an effort to implement a robust control scheme on the all-electric ship. style='mso-spacerun:yes'> The proposed solution is to apply H∞ Robust Control as an advanced control technique, with realistic constraints to keep the shipboard power system within stability margins during normal and abnormal operating scenarios. In this work, H∞ Robust Control has been developed in the form of state space equations which are optimized using linear matrix implementation. The developed H∞ Control has been implemented on the different operating scenarios to validate the functionality and to compare it with another control technique. style='mso-spacerun:yes'> Test case results for one-generator, two-generator similar and two-generator dissimilar have been described. style='mso-spacerun:yes'> Stability indicators have been determined and compared for various types of faults and transients for removing and adding static and dynamic loads. The research provides the foundation for applications of advanced control techniques for the next generation all-electric ship.
|
35 |
Tuning robust control systems under parametric uncertaintyLaiseca, Mario January 1994 (has links)
No description available.
|
36 |
Control Design for Long Endurance Unmanned Underwater Vehicle SystemsKleiber, Justin Tanner 24 May 2022 (has links)
In this thesis we demonstrate a technique for robust controller design for an autonomous underwater vehicle (AUV) that explicitly handles the trade-off between reference tracking, agility, and energy efficient performance. AUVs have many sources of modeling uncertainty that impact the uncertainty in maneuvering performance. A robust control design process is proposed to handle these uncertainties while meeting control system performance objectives. We investigate the relationships between linear system design parameters and the control performance of our vehicle in order to inform an H∞ controller synthesis problem with the objective of balancing these tradeoffs. We evaluate the controller based on its reference tracking performance, agility and energy efficiency, and show the efficacy of our control design strategy. / Master of Science / In this thesis we demonstrate a technique for autopilot design for an autonomous underwater vehicle (AUV) that explicitly handles the trade-off between three performance metrics. Mathematical models of AUVs are often unable to fully describe their many physical properties. The discrepancies between the mathematical model and reality impact how certain we can be about an AUV's behavior. Robust controllers are a class of controller that are designed to handle uncertainty. A robust control design process is proposed to handle these uncertainties while meeting vehicle performance objectives. We investigate the relationships between design parameters and the performance of our vehicle. We then use this relationship to inform the design of a controller. We evaluate this controller based on its energy efficiency, agility and ability to stay on course, and thus show the effectiveness of our control design strategy.
|
37 |
Real time health monitoring and control system methodology for flexible space structuresJayaram, Sanjay 01 January 2004 (has links)
No description available.
|
38 |
H Infinity - Based Robust Controller For Aerospace VehiclesGeorge, K Koshy 11 1900 (has links) (PDF)
No description available.
|
39 |
Robust controller for delays and packet dropout avoidance in solar-power wireless networkAl-Azzawi, Waleed January 2013 (has links)
Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy.
|
40 |
An investigation on the application of nonlinear robust adaptive control theory in AC/DC power systemsPoon, Kai-yin, Kenny., 潘啟然. January 2007 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Master / Master of Philosophy
|
Page generated in 0.0601 seconds