• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determination of spatial dependence in fracture set characteristics by geostatistical methods

Miller, Stanley Mark January 1979 (has links)
No description available.
2

Seismic characterization of naturally fractured reservoirs

Bansal, Reeshidev, 1978- 29 August 2008 (has links)
Many hydrocarbon reservoirs have sufficient porosity but low permeability (for example, tight gas sands and coal beds). However, such reservoirs are often naturally fractured. The fracture patterns in these reservoirs can control flow and transport properties, and therefore, play an important role in drilling production wells. On the scale of seismic wavelengths, closely spaced parallel fractures behave like an anisotropic media, which precludes the response of individual fractures in the seismic data. There are a number of fracture parameters which are needed to fully characterize a fractured reservoir. However, seismic data may reveal only certain fracture parameters and those are fracture orientation, crack density and fracture infill. Most of the widely used fracture characterization methods such as Swave splitting analysis or amplitude vs. offset and azimuth (AVOA) analysis fail to render desired results in laterally varying media. I have conducted a systematic study of the response of fractured reservoirs with laterally varying elastic and fracture properties, and I have developed a scheme to invert for the fracture parameters. I have implemented a 3D finite-difference method to generate multicomponent synthetic seismic data in general anisotropic media. I applied the finite-difference algorithm in both Standard and Rotated Staggered grids. Standard Staggered grid is used for media having symmetry up to orthorhombic (isotropic, transversely isotropic, and orthorhombic), whereas Rotated Staggered grid is implemented for monoclinic and triclinic media. I have also developed an efficient and accurate ray-bending algorithm to compute seismic traveltimes in 3D anisotropic media. AVOA analysis is equivalent to the first-order Born approximation. However, AVOA analysis can be applied only in a laterally uniform medium, whereas the Born-approximation does not pose any restriction on the subsurface structure. I have developed an inversion scheme based on a ray-Born approximation to invert for the fracture parameters. Best results are achieved when both vertical and horizontal components of the seismic data are inverted simultaneously. I have also developed an efficient positivity constraint which forbids the inverted fracture parameters to be negative in value. I have implemented the inversion scheme in the frequency domain and I show, using various numerical examples, that all frequency samples up to the Nyquist are not required to achieve desired inversion results.

Page generated in 0.1324 seconds