• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental method of analyzing stress intensity factors and singularity order in rocket motor geometry

Che-Way, Chang 16 September 2005 (has links)
A series of frozen stress experiments were conducted on surface flaws of varying aspect ratios in pressurized cylinder with star-shaped cutout in order to study the stress intensity factor distribution along the flaw border and to estimate the loss of the inverse square root singularity when the crack border intersects the inner star surface at right angles. By applying a refined optical method, the photoelastic data are converted into classical stress intensity factors resulting from the three dimensional stress state existing at the inner surface and compared with a numerical analysis to indicate the nearly uniform distribution of the stress intensity factor along the crack border. Based upon this result a two dimensional weight function approach is demonstrated to yield accurate values of the maximum stress intensity factor for the motor grain test geometry. / Ph. D.
2

Flow field investigation in pulse 1 motor of a two-pulse solid rocket motor

Qian, Xin 12 March 2009 (has links)
A water analogy technique was used in this investigation of the flow field in the pulse I motor of a two-pulse solid rocket motor. A full scale model of clear acrylic material was constructed to allow direct visual access of the flow field. The experiment, which was conducted with one of the VPI water analogy rigs, simulated the flow in the spent pulse I motor chamber after the pulse Il motor would have been ignited. The relations between the pattern and angle of the throughflow holes on the bulkhead--which separates the two motor chambers--and the downstream flow pattern in the pulse I chamber were assessed by changing the bulkhead model configuration for each test. Video records of the flow pattern were obtained through flow visualization tests, which used either fluorescein dye or air bubbles as the tracer. Also, hot water tests with thermocouple measurements were conducted as a means of investigating the rate of mixing of the propellent from the pulse Il motor with the gases in the pulse I motor chamber, as well as the migration of the pulse Il propellent along the wall of the pulse I motor casing. The test data show a clear relation between the hole arrangement on the bulkhead and the ensuing downstream flow pattern, as well as the rate of mixing along the wall of the pulse I motor casing. Consequently, the results provide directions for improving the performance of heat transfer insulation material on the wall of the pulse I motor through a prudent choice of the hole arrangement on the bulkhead. / Master of Science

Page generated in 0.0533 seconds