• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic dynamics of cell adhesion in hydrodynamic flow

Korn, Christian January 2007 (has links)
In this thesis the interplay between hydrodynamic transport and specific adhesion is theoretically investigated. An important biological motivation for this work is the rolling adhesion of white blood cells experimentally investigated in flow chambers. There, specific adhesion is mediated by weak bonds between complementary molecular building blocks which are either located on the cell surface (receptors) or attached to the bottom plate of the flow chamber (ligands). The model system under consideration is a hard sphere covered with receptors moving above a planar ligand-bearing wall. The motion of the sphere is influenced by a simple shear flow, deterministic forces, and Brownian motion. An algorithm is given that allows to numerically simulate this motion as well as the formation and rupture of bonds between receptors and ligands. The presented algorithm spatially resolves receptors and ligands. This opens up the perspective to apply the results also to flow chamber experiments done with patterned substrates based on modern nanotechnological developments. In the first part the influence of flow rate, as well as of the number and geometry of receptors and ligands, on the probability for initial binding is studied. This is done by determining the mean time that elapses until the first encounter between a receptor and a ligand occurs. It turns out that besides the number of receptors, especially the height by which the receptors are elevated above the surface of the sphere plays an important role. These findings are in good agreement with observations of actual biological systems like white blood cells or malaria-infected red blood cells. Then, the influence of bonds which have formed between receptors and ligands, but easily rupture in response to force, on the motion of the sphere is studied. It is demonstrated that different states of motion-for example rolling-can be distinguished. The appearance of these states depending on important model parameters is then systematically investigated. Furthermore, it is shown by which bond property the ability of cells to stably roll in a large range of applied flow rates is increased. Finally, the model is applied to another biological process, the transport of spherical cargo particles by molecular motors. In analogy to the so far described systems molecular motors can be considered as bonds that are able to actively move. In this part of the thesis the mean distance the cargo particles are transported is determined. / In der vorliegenden Arbeit wird das Zusammenspiel zwischen hydrodynamischem Transport und spezifischer Adhäsion theoretisch untersucht. Eine wichtige biologische Motivation für diese Arbeit ist die rollende Adhäsion weißer Blutkörperchen, die experimentell in Flusskammern untersucht wird. Die spezifische Adhäsion wird durch schwache Bindungen zwischen komplementären molekularen Bausteinen vermittelt, die sich einerseits auf der Zelloberfläche, Rezeptoren genannt, andererseits auf der unteren begrenzenden Platte der Flusskammer, Liganden genannt, befinden. Das untersuchte Modellsystem besteht aus einer festen Kugel, die mit Rezeptoren bedeckt ist und sich unter dem Einfluss einer einfachen Scherströmung, deterministischer Kräfte und der Brownschen Molekularbewegung oberhalb einer mit Liganden bedeckten Wand bewegt. Es wird ein Algorithmus angegeben, mit dessen Hilfe diese Bewegung sowie das Entstehen und Reißen von Bindungen zwischen Rezeptoren und Liganden numerisch simuliert werden kann. In der numerischen Modellierung werden die Positionen von Rezeptoren und Liganden räumlich aufgelöst, wodurch sich die Möglichkeit ergibt, die Ergebnisse auch mit Flusskammerexperimenten, in denen moderne nanotechnologisch strukturierte Substrate verwendet werden, zu vergleichen. Als Erstes wird der Einfluss von Strömungsrate sowie Zahl und Form der Rezeptoren bzw. Liganden auf die Wahrscheinlichkeit, mit der es zu einer Bindung kommen kann, untersucht. Hierfür wird die mittlere Zeit bestimmt, die vergeht bis zum ersten Mal ein Rezeptor mit einem Liganden in Kontakt kommt. Dabei stellt sich heraus, dass neben der Anzahl der Rezeptoren auf der Kugel insbesondere der Abstand, welchen die Rezeptoren von der Oberfläche haben, eine große Rolle spielt. Dieses Ergebnis ist in sehr guter Übereinstimmung mit tatsächlichen biologischen Systemen wie etwa weißen Blutkörperchen oder mit Malaria infizierten roten Blutkörperchen. Als Nächstes wird betrachtet, welchen Einfluss Bindungen haben, die sich zwischen Rezeptoren und Liganden bilden, aber unter Kraft auch leicht wieder reißen. Dabei zeigt sich, dass verschiedene Bewegungstypen auftreten, beispielsweise Rollen, deren Erscheinen in Abhängigkeit wichtiger Modellparameter dann systematisch untersucht wird. Weiter wird der Frage nachgegangen, welche Eigenschaften von Bindungen dazu führen können, dass Zellen in einem großen Bereich von Strömungsraten ein stabiles Rollverhalten zeigen. Abschließend wird das Modell auf einen etwas anderen biologischen Prozess angewendet, nämlich den Transport kugelförmiger Lastpartikeln durch molekulare Motoren. In Analogie zu den bisher beschriebene Systemen können diese molekularen Motoren als sich aktiv bewegende Bindungen betrachtet werden. In diesem Teil der Arbeit wird ermittelt, wie weit die Lastpartikel im Mittel transportiert werden.
2

Forces and elasticity in cell adhesion / Forces and elasticity in cell adhesion

Schwarz, Ulrich Sebastian January 2004 (has links)
Das Verhalten adhärenter Zellen hängt stark von den chemischen, topographischen und mechanischen Eigenschaften ihrer Umgebung ab. Experimentelle Untersuchungen der letzten Jahre haben gezeigt, dass adhärente Zellen aktiv die elastischen Eigenschaften ihrer Umgebung erkunden, indem sie an dieser ziehen. Der resultierende Kraftaufbau hängt von den elastischen Eigenschaften der Umgebung ab und wird an den Adhäsionskontakten in entsprechende biochemische Signale umgewandelt, die zelluläre Programme wie Wachstum, Differenzierung, programmierten Zelltod und Zellbewegung mitbestimmen. Im Allgemeinen sind Kräfte wichtige Einflussgrößen in biologischen Systemen. Weitere Beispiele dafür sind Hör- und Tastsinn, Wundheilung sowie die rollende Adhäsion von weißen Blutkörperchen auf den Wänden der Blutgefäße. In der Habilitationsschrift von Ulrich Schwarz werden mehrere theoretische Projekte vorgestellt, die die Rolle von Kräften und Elastizität in der Zelladhäsion untersuchen.<br /> (1) Es wurde eine neue Methode entwickelt, um die Kräfte auszurechnen, die Zellen an den Kontaktpunkten auf mikro-strukturierte elastische Substrate ausüben. Das Hauptergebnis ist, dass Zell-Matrix-Kontakte als Mechanosensoren funktionieren, an denen interne Kräfte in Proteinaggregation umgewandelt werden.<br /> (2) Eine Ein-Schritt-Master-Gleichung, die die stochastische Dynamik von Adhäsionsclustern als Funktion von Clustergröße, Rückbindungsrate und Kraft beschreibt, wurde sowohl analytisch als auch numerisch gelöst. Zudem wurde dieses Modell auf Zell-Matrix-Kontakte, dynamische Kraftspektroskopie sowie die rollende Adhäsion angewandt.<br /> (3) Im Rahmen der linearen Elastizitätstheorie und mit Hilfe des Konzepts der Kraftdipole wurde ein Modell formuliert und gelöst, das die Positionierung und Orientierung von Zellen in weicher Umgebung vorhersagt. Diese Vorhersagen sind in guter Übereinstimmung mit zahlreichen experimentellen Beobachtungen für Fibroblasten auf elastischen Substraten und in Kollagen-Gelen. / The behaviour of an adhering cell is strongly influenced by the chemical, topographical and mechanical properties of the surface it attaches to. During recent years, it has been found experimentally that adhering cells actively sense the elastic properties of their environment by pulling on it through numerous sites of adhesion. The resulting build-up of force at sites of adhesion depends on the elastic properties of the environment and is converted into corresponding biochemical signals, which can trigger cellular programmes like growth, differentiation, apoptosis, and migration. In general, force is an important regulator of biological systems, for example in hearing and touch, in wound healing, and in rolling adhesion of leukocytes on vessel walls. In the habilitation thesis by Ulrich Schwarz, several theoretical projects are presented which address the role of forces and elasticity in cell adhesion.<br /> (1) A new method has been developed for calculating cellular forces exerted at sites of focal adhesion on micro-patterned elastic substrates. The main result is that cell-matrix contacts function as mechanosensors, converting internal force into protein aggregation.<br /> (2) A one-step master equation for the stochastic dynamics of adhesion clusters as a function of cluster size, rebinding rate and force has been solved both analytically and numerically. Moreover this model has been applied to the regulation of cell-matrix contacts, to dynamic force spectroscopy, and to rolling adhesion.<br /> (3) Using linear elasticity theory and the concept of force dipoles, a model has been introduced and solved which predicts the positioning and orientation of mechanically active cells in soft material, in good agreement with experimental observations for fibroblasts on elastic substrates and in collagen gels.

Page generated in 0.0756 seconds