• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Short-term Effects of Fertilization on Total Soil CO2 Efflux, Heterotrophic, and Autotrophic Respiration of Loblolly Pine (Pinus taeda L.)

Tyree, Michael Christopher 13 September 2005 (has links)
Fertilization is a common, cost effective treatment for increasing forest productivity within managed forests of the southeastern United States. However, little is known about how fertilization affects the below-ground processes that drive soil CO2 efflux in loblolly pine (Pinus taeda L.). A thorough understanding of below-ground carbon dynamics is necessary for the estimation of net ecosystem productivity and the carbon storage potential of these managed systems. In April 2004, we began monitoring total soil CO2 efflux (EC), heterotrophic (RH), and root respiration (RR) in response to fertilization with diammonium phosphate (DAP). Respiratory components were measured prior to fertilization, weekly following fertilization, and bi-weekly after respiratory components stabilized using a dynamic closed chamber and an infrared gas analyzer. We found that EC differed significantly (P<0.0001) between fertilized and unfertilized plots, but the direction was dependent on date. In the early period of the study, fertilized plot values were lower than control plots. However, by the latter periods fertilized plot values returned to control levels except for one sampling date in March 2005 when fertilized plot values were greater then control plots. Heterotrophic respiration was consistently and significantly (P=0.0002) lower in fertilized plots. Root respiration was significantly (P=0.0597) increased in fertilized plots when analyzed over the study and showed a 20% increase due to fertilization. We concluded that an increase in RR and possibly root biomass was enough to balance the decrease in RH leading to no difference in EC later in the growing season. We performed a pair of greenhouse studies to observe the effects of fertilization in the form of diammonium phosphate (DAP) on RR. The objectives were to determine how nutrient additions initially affect RR in one-year-old loblolly pine seedlings. Secondly, we wanted to determine if Captan [N-(trichloromethylthio) cyclohex-4-ene-1, 2-dicarboximide], a mild fungicide, could be used to reduce or eliminate ecto-mycorrhizae upon visual inspection. Both studies showed that initially, at a high rate (100 ppm N and 49 ppm P) of fertilization, RR was significantly (P<0.10) increased relative to seedlings that did not receive fertilization. This increase was only temporary with rates returning to, or decreasing below, control levels by the end of the study. No consistent trend was found between low (25 ppm N and 13 ppm P) and moderate (50 ppm N and 25 ppm P) rates of fertilization. Captan was shown to generally have no affect on RR. Captan and fertilization both showed (visual inspection) a decrease in fine-roots and mycorrhizae, which could explain the reduction in respiration rates observed in these treatments by the end of the studies. / Master of Science
12

Soil Carbon Dioxide Efflux Across Four Age Classes of Plantation Loblolly Pine (Pinus taeda L.) on the Virginia Piedmont

Wiseman, P. Eric 28 November 2001 (has links)
Soil carbon dioxide efflux resulting from microbial and root respiration is a major component of the forest carbon cycle. We undertook this investigation to better understand the nature of soil carbon dioxide efflux of plantation loblolly pine, an important ecological and economical resource in the southeastern United States. Specifically, we hoped to learn how soil carbon dioxide efflux differs both spatially and temporally for four age classes of plantation loblolly pine on the Virginia piedmont. During a 12-month period, soil carbon dioxide efflux was repeatedly measured for four age classes of plantation loblolly pine using a dynamic, closed-chamber infrared gas analyzer. The age classes examined were 1- to 2-year-old, 4- to 6-year-old, 8- to 12-year-old, and 20- to 25-year-old stands. Mean soil carbon dioxide efflux rates measured during the 12-month study were 1.72, 2.58, 2.84, and 2.90 micromole/sq m/s for 1- to 2-year-old, 4- to 6-year-old, 8- to 12-year-old, and 20- to 25-year-old stands, respectively. Stand age had a significant effect on efflux rate during 10 of the 12 monthly sampling sessions. Additionally, mean efflux rates were consistently higher near the tree and a significant positional difference was detected during 8 of the 12 monthly sampling sessions. Mean soil carbon dioxide efflux rates, by position, for the 12-month study were 2.72 and 2.28 micromole/sq m/s for the near and away measurement positions, respectively. Based on monthly mean soil carbon dioxide efflux rates, annual carbon losses were estimated at 651, 976, 1074, and 1082 g C/sq m/yr for 1- to 2-year-old, 4- to 6-year-old, 8- to 12-year-old, and 20- to 25-year-old stands, respectively. Regression analysis was used to examine the influence of soil and climatic factors on seasonal changes in soil carbon dioxide efflux. The most influential factors affecting soil carbon dioxide efflux during the 12-month study were soil temperature, soil moisture, stand age, and measurement position. We believe respiring roots significantly influence soil carbon dioxide efflux of plantation loblolly pine and account for differences observed between stands of different ages as well as spatial differences observed within a given stand. / Master of Science
13

Impacts of Rhizosphere CO₂ on Root Phosphoenolpyruvate Carboxylase Activity, Root Respiration Rate and Rhizodeposition in Populus spp.

Matarese, Dawn Marie 01 January 2010 (has links)
Roots live in and have evolved in a high carbon dioxide (CO₂) environment, yet relatively little research has been conducted on the impacts of soil dissolved inorganic carbon (DIC) on root metabolism. In this thesis, I explore the impacts of root-zone DIC on whole plant biomass accumulation, water use efficiency, and above-ground gas exchange. In addition, I explore the impacts of root-zone DIC on root processes: root PEP-Carboxylase activity, root respiration rate and root exudation of Krebs cycle organic acids. Root-zone DIC did not impact biomass accumulation, leaf gas exchange parameters or water use efficiency under the growth conditions examined. Root-zone DIC did increase root PEP-Carboxylase activity, but decreased root respiration (both CO₂ production and O₂ consumption) and decreased organic acid exudation rates. Increase in measurement CO₂ partial pressure was found to cause an instantaneous decrease in root CO₂ production, and I provide evidence that changes in root metabolism (CO₂ uptake by roots) are part of the cause of this phenomenon. A hypothesized relationship between root respiration rate and Krebs cycle organic acid exudation was not supported by my data. I conclude that root-zone DIC has important impacts on critical functions of root metabolism, and should be considered as an important abiotic factor much in the same way atmospheric CO₂ is for leaves and whole plant biology.
14

Carbon release from woody parts of trees along an elevation gradient in a tropical montane moist forest of Southern Ecuador / Kohlenstoffabgabe von verholzten Organen von Bäumen entlang eines Höhengradienten in einem tropischen Bergeregenwald in Süd-Ecuador

Zach, Alexandra 30 April 2008 (has links)
No description available.
15

Die Atmung der verholzten Organe von Altbuchen (Fagus sylvatica L.) in einem Kalk- und einem Sauerhumusbuchenwald / Woody tissue respiration of two old-growth beech forests on base-rich and acidic soils

Strobel, Jörg 28 April 2004 (has links)
No description available.
16

Effects of Air vs. Air+Soil Heating During a Simulated Heat Wave on White Oak (Quercus alba) and Black Oak (Quercus velutina)

Lightle, Nicole E. 22 August 2013 (has links)
No description available.

Page generated in 0.1617 seconds