Spelling suggestions: "subject:"footed trees"" "subject:"mooted trees""
1 |
Aspects of branch groupsGarrido, Alejandra January 2015 (has links)
This thesis is a study of the subgroup structure of some remarkable groups of automorphisms of rooted trees. It is divided into two parts. The main result of the first part is seemingly of an algorithmic nature, establishing that the Gupta--Sidki 3-group G has solvable membership problem. This follows the approach of Grigorchuk and Wilson who showed the same result for the Grigorchuk group. The proof, however, is not algorithmic, and it moreover shows a striking subgroup property of G: that all its infinite finitely generated subgroups are abstractly commensurable with either G or G × G. This is then used to show that G is subgroup separable which, together with some nice presentability properties of G, implies that the membership problem is solvable. The proof of the main theorem is also used to show that G satisfies a "strong fractal" property, in that every infinite finitely generated subgroup acts like G on some rooted subtree. The second part concerns the subgroup structure of branch and weakly branch groups in general. Motivated by a natural question raised in the first part, a necessary condition for direct products of branch groups to be abstractly commensurable is obtained. From this condition it follows that the Gupta--Sidki 3-group is not abstractly commensurable with its direct square. The first main result in the second part states that any (weakly) branch action of a group on a rooted tree is determined by the subgroup structure of the group. This is then applied to answer a question of Bartholdi, Siegenthaler and Zalesskii, showing that the congruence subgroup property for branch and weakly branch groups is independent of the actions on a tree. Finally, the information obtained on subgroups of branch groups is used to examine which groups have an essentially unique branch action and why this holds.
|
2 |
A post-Lie operad of rooted trees / Uma operad pós-Lie de árvores enraizadasSilva, Pryscilla dos Santos Ferreira 29 June 2018 (has links)
In this thesis we propose a description of the operad defining post-Lie algebras in terms of rooted trees and we discuss some applications of such a construction. In particular, we re-derive both the free post-Lie algebra defined in [22] and the main result of the paper [8]. Furthermore, a possible extension of the concept of symmetric brace algebra to the category of the post-Lie algebras is proposed. / Nessa tese propomos a descrição da operad que define as álgebras pós-Lie em termos de árvores enraizadas e discutimos algumas aplicações dessa construção. Em particular, nós obtemos novamente a álgebra pós-Lie livre definida em [22] e o resultado principal do artigo [8]. Além disso, uma possível extensão do conceito de álgebra brace simétrica à categoria de álgebras pós-Lie é apresentada.
|
3 |
A post-Lie operad of rooted trees / Uma operad pós-Lie de árvores enraizadasPryscilla dos Santos Ferreira Silva 29 June 2018 (has links)
In this thesis we propose a description of the operad defining post-Lie algebras in terms of rooted trees and we discuss some applications of such a construction. In particular, we re-derive both the free post-Lie algebra defined in [22] and the main result of the paper [8]. Furthermore, a possible extension of the concept of symmetric brace algebra to the category of the post-Lie algebras is proposed. / Nessa tese propomos a descrição da operad que define as álgebras pós-Lie em termos de árvores enraizadas e discutimos algumas aplicações dessa construção. Em particular, nós obtemos novamente a álgebra pós-Lie livre definida em [22] e o resultado principal do artigo [8]. Além disso, uma possível extensão do conceito de álgebra brace simétrica à categoria de álgebras pós-Lie é apresentada.
|
4 |
Algèbres de Hopf d'arbres et structures pré-Lie / Hopf algebras of trees and pre-Lie structuresSaïdi, Abdellatif 17 December 2011 (has links)
Nous étudions dans cette thèse l’algèbre de Hopf H associée à l’opérade pré-Lie. L’espace des éléments primitifs du dual gradué est muni d’une structure pré-Lie à gauche notée ⊲ définie par l’insertion d’un arbre dans un autre. Nous retrouvons la relation de dérivation entre le produit pré-Lie ⊲ et le produit pré-Lie de greffe → sur les éléments primitifs du dual gradué de l’algèbre de Hopf de Connes Kreimer HCK. Nous mettons en évidence un coproduit sur le produit tensoriel H ⊗HCK, qui en fait une algèbre de Hopf dont le dual gradué est isomorphe à l’algèbre enveloppante du produit semi-direct des deux algèbres de Lie considérées. Nous montrons que l’espace engendré par les arbres enracinés qui ont au moins une arête, muni du produit d’insertion, est une algèbre pré-Lie (non libre) engendrée par deux éléments. Nous mettons en évidence deux familles de relations. De plus nous montrons un résultat similaire pour l’algèbre pré-Lie associée à l’opérade NAP. Finalement on introduit les opérades à débit constant et on montre que l’opérade pré-Lie s’obtient comme déformation de l’opérade NAP dans ce cadre. / We investigate in this thesis the Hopf algebra structure on the vector space H spanned by the rooted forests, associated with the pre-Lie operad. The space of primitive elements of the graded dual of this Hopf algebra is endowed with a left pre-Lie product denoted by ⊲, defined in terms of insertion of a tree inside another. In this thesis we retrieve the “derivation” relation between the pre-Lie structure ⊲ and the left pre-Lie product → on the space of primitive elements of the graded dual H0CK of the Connes-Kreimer Hopf algebra HCK, defined by grafting. We also exhibit a coproduct on the tensor product H⊗HCK, making it a Hopf algebra the graded dual of which is isomorphic to the enveloping algebra of the semidirect product of the two (pre-)Lie algebras considered. We prove that the span of the rooted trees with at least one edge endowed with the pre-Lie product ⊲ is generated by two elements. It is not free : we exhibit two families of relations. Moreover we prove a similar result for the pre-Lie algebra associated with the NAP operad. Finally, we introduce current preserving operads and prove that the pre-Lie operad can be obtained as a deformation of the NAP operad in this framework.
|
5 |
Bases de monômes dans les algèbres pré-Lie libres et applications / Monomial bases for free pre-Lie algebras and applicationsAl-Kaabi, Mahdi Jasim Hasan 28 September 2015 (has links)
Dans cette thèse, nous étudions le concept d’algèbre pré-Lie libre engendrée par un ensemble (non-vide). Nous rappelons la construction par A. Agrachev et R. Gamkrelidze des bases de monômes dans les algèbres pré-Lie libres. Nous décrivons la matrice des vecteurs d’une base de monômes en termes de la base d’arbres enracinés exposée par F. Chapoton et M. Livernet. Nous montrons que cette matrice est unipotente et trouvons une expression explicite pour les coefficients de cette matrice, en adaptant une procédure suggérée par K. Ebrahimi-Fard et D. Manchon pour l’algèbre magmatique libre. Nous construisons une structure d’algèbre pré-Lie sur l’algèbre de Lie libre $\mathcal{L}$(E) engendrée par un ensemble E, donnant une présentation explicite de $\mathcal{L}$(E) comme quotient de l’algèbre pré-Lie libre $\mathcal{T}$^E, engendrée par les arbres enracinés (non-planaires) E-décorés, par un certain idéal I. Nous étudions les bases de Gröbner pour les algèbres de Lie libres dans une présentation à l’aide d’arbres. Nous décomposons la base d’arbres enracinés planaires E-décorés en deux parties O(J) et $\mathcal{T}$(J), où J est l’idéal définissant $\mathcal{L}$(E) comme quotient de l’algèbre magmatique libre engendrée par E. Ici, $\mathcal{T}$(J) est l’ensemble des termes maximaux des éléments de J, et son complément O(J) définit alors une base de $\mathcal{L}$(E). Nous obtenons un des résultats importants de cette thèse (Théorème 3.12) sur la description de l’ensemble O(J) en termes d’arbres. Nous décrivons des bases de monômes pour l’algèbre pré-Lie (respectivement l’algèbre de Lie libre) $\mathcal{L}$(E), en utilisant les procédures de bases de Gröbner et la base de monômes pour l’algèbre pré-Lie libre obtenue dans le Chapitre 2. Enfin, nous étudions les développements de Magnus classique et pré-Lie, discutant comment nous pouvons trouver une formule de récurrence pour le cas pré-Lie qui intègre déjà l’identité pré-Lie. Nous donnons une vision combinatoire d’une méthode numérique proposée par S. Blanes, F. Casas, et J. Ros, sur une écriture du développement de Magnus classique, utilisant la structure pré-Lie de $\mathcal{L}$(E). / In this thesis, we study the concept of free pre-Lie algebra generated by a (non-empty) set. We review the construction by A. Agrachev and R. Gamkrelidze of monomial bases in free pre-Lie algebras. We describe the matrix of the monomial basis vectors in terms of the rooted trees basis exhibited by F. Chapoton and M. Livernet. Also, we show that this matrix is unipotent and we find an explicit expression for its coefficients, adapting a procedure implemented for the free magmatic algebra by K. Ebrahimi-Fard and D. Manchon. We construct a pre-Lie structure on the free Lie algebra $\mathcal{L}$(E) generated by a set E, giving an explicit presentation of $\mathcal{L}$(E) as the quotient of the free pre-Lie algebra $\mathcal{T}$^E, generated by the (non-planar) E-decorated rooted trees, by some ideal I. We study the Gröbner bases for free Lie algebras in tree version. We split the basis of E- decorated planar rooted trees into two parts O(J) and $\mathcal{T}$(J), where J is the ideal defining $\mathcal{L}$(E) as a quotient of the free magmatic algebra generated by E. Here $\mathcal{T}$(J) is the set of maximal terms of elements of J, and its complement O(J) then defines a basis of $\mathcal{L}$(E). We get one of the important results in this thesis (Theorem 3.12), on the description of the set O(J) in terms of trees. We describe monomial bases for the pre-Lie (respectively free Lie) algebra $\mathcal{L}$(E), using the procedure of Gröbner bases and the monomial basis for the free pre-Lie algebra obtained in Chapter 2. Finally, we study the so-called classical and pre-Lie Magnus expansions, discussing how we can find a recursion for the pre-Lie case which already incorporates the pre-Lie identity. We give a combinatorial vision of a numerical method proposed by S. Blanes, F. Casas, and J. Ros, on a writing of the classical Magnus expansion in $\mathcal{L}$(E), using the pre-Lie structure.
|
Page generated in 0.0452 seconds