• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Forcing in a nonzonal mean flow

McLandress, Charles. January 1983 (has links)
No description available.
2

A study on the vertical propagation of planetary waves and the effects of the upper boundary condition

Cardelino, Carlos Antonio January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology, 1979. / Microfiche copy available in Archives and Science. / Bibliography : leaves 119-120. / by Carlos Antonio Cardelino. / M.S.
3

Forcing in a nonzonal mean flow

McLandress, Charles. January 1983 (has links)
No description available.
4

Eddy heat fluxes and stability of planetary waves

Lin, Charles Augustin January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Meteorology, 1979. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 143-146. / by Charles Augustin Lin. / Ph.D.
5

On the propagation of free topographic Rossby waves near continental margins

Ou, Hsien Wang January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Meteorology, 1979. / Vita. / Bibliography: leaves 121-122. / by Hsien Wang Ou. / Ph.D.
6

Pseudo-spectral approximations of Rossby and gravity waves in a two-Layer fluid

Wolfkill, Karlan Stephen 13 June 2012 (has links)
The complexity of numerical ocean circulation models requires careful checking with a variety of test problems. The purpose of this paper is to develop a test problem involving Rossby and gravity waves in a two-layer fluid in a channel. The goal is to compute very accurate solutions to this test problem. These solutions can then be used as a part of the checking process for numerical ocean circulation models. Here, Chebychev pseudo-spectral methods are used to solve the governing equations with a high degree of accuracy. Chebychev pseudo-spectral methods can be described in the following way: For a given function, find the polynomial interpolant at a particular non-uniform grid. The derivative of this polynomial serves as an approximation to the derivative of the original function. This approximation can then be inserted to differential equations to solve for approximate solutions. Here, the governing equations reduce to an eigenvalue problem with eigenvectors and eigenvalues corresponding to the spatial dependences of modal solutions and the frequencies of those solutions, respectively. The results of this method are checked in two ways. First, the solutions using the Chebychev pseudo-spectral methods are analyzed and are found to exhibit the properties known to belong to physical Rossby and gravity waves. Second, in the special case where the two-layer model degenerates to a one-layer system, some analytic solutions are known. When the numerical solutions are compared to the analytic solutions, they show an exponential rate of convergence. The conclusion is that the solutions computed using the Chebychev pseudo-spectral methods are highly accurate and could be used as a test problem to partially check numerical ocean circulation models. / Graduation date: 2012

Page generated in 0.1232 seconds