Spelling suggestions: "subject:"rotary cutting tool"" "subject:"rotary cutting pool""
1 |
Machining of Some Difficult-to-Cut Materials with Rotary Cutting ToolsStjernstoft, Tero January 2004 (has links)
Automobile and aero industries have an increasing interestin materials with improved mechanical properties. However, manyof these new materials are classified as difficult-to-cut withconventional tools. It is obvious that tools, cutting processesand cutting models has to be devel-oped parallel to materialsscience. In this thesis rotary cutting tools are tested as analternative toexpensive diamond or cubic bore nitridetools. Metal matrix composites mostly consist of a light metalalloy (such as aluminium or titanium) reinforced with hard andabrasive ceramic parti-cles or fibres. On machining, thereinforcement results in a high rate of tool wear. This is themain problem for the machining of MMCs. Many factors affect thelife length of a tool, i.e. matrix alloy, type, size andfraction of the reinforcement, heat treatment, cuttingconditions and tool properties. In tests, the Al-SiC MMC formed a deformation layer duringmilling, probably affected by lack of cooling. The dominatingfactor for tool life was the cutting speed. Water jet or CO2cooling of turning did not provide dramatic increase in toollife. With PCD, cutting speeds up to 2000 m/min were usedwithout machining problems and BUE formation. Tool flank wearwas abrasive and crater wear created an "orange-peel type" wearsurface. PCD inserts did not show the typical increase in flankwear rate at the end of its lifetime. The use of self-propelled rotary tools seems to be apromising way to increase tool life. No BUE was formed on therotary tool at high cutting data. The measurements indicatethat the rotary tool creates twice as good surface as PCDtools. The longest tool life was gained with an inclinationangle of 10 degrees. Tool costs per component will beapproximately the same, but rotary cutting tool allows higherfeeds and therefore a higher production rate and thus a lowerproduction cost. The rotary cutting operation might have a potential toincrease productiv-ity in bar peeling. The lack of BUE withrotary cutting gives hope on higher tool life. The test resultsshow that tool wear was 27% lower with rotary cutting tools.Increase of cutting speed from 22 to 44 m/min did not affectcutting forces. This indicates that the cutting speed canincrease without significant change in tool wear rate. Issues related to rotary cutting like cutting models,cutting processes, standards, tools and models have beendiscussed. A tool wear model with kinetic energy has beendiscussed. KEYWORDS:Difficult-to-Cut material, Metal MatrixComposite (MMC), Machining, Machinability, Rotary Cutting Tool,Acoustic Emission / <p>QCR 20161026</p>
|
2 |
Self-propelled rotary tool for turning difficult-to-cut materialsParker, Grant 01 April 2011 (has links)
Hard turning of difficult-to-cut materials is an economical method of machining components with high surface quality and mechanical performance. Conventionally in the machining industry, generating a component from raw goods includes a casting or forging process, rough machining, heat treatment to a desired hardness, and then finished-machining through a grinding process. Given the relative disadvantages of grinding, which include high specific energy consumption and low material removal rates, a newer technology has been introduced; hard turning. After the heat treatment of a cast part (generally in a range of 50-65 HRC), hard turning allows for immediate finished-machining. Hard turning reduces the production time, sequence, cost, and energy consumed. In addition, dry machining offsets environmental concerns associated with the use of coolant in grinding operations as well as other common turning operations.
Higher specific forces and temperatures in the contact area between the tool and workpiece lead to excessive tool wear. Generated tool wear affects the quality of the machined surface. Therefore, minimizing tool wear and consequently the generated surface quality become the status quo. Adverse effects associated with generated heat at the tool tip can be reduced by using
cutting fluid or by continuously providing a fresh cutting edge. The latter method will be applied in this thesis.
Rotary tool cutting involves a tool in the form of a disk that rotates about its axis. Different types of rotary tools have been developed, all with similar functional characteristics, however few are commercially available. Rotary tools can be classified as either driven or self-propelled. The former is provided rotational motion by an external source while the latter is rotated by the chip flow over the rake face of the tool.
A prototype self-propelled rotary tool (SPRT) for hard turning was developed which provides economical benefits and affordability for the user. It was tested on a turret-type CNC lathe by machining AISI 4140 Steel that was heat treated to 54-56HRC and Grade 5 Titanium (Ti-6Al-4V). Carbide inserts with ISO designation RCMT 09 T3 00 (9.5mm diameter) were used during machining. Both the SPRT rotational speed and the workpiece surface roughness were measured. Also, chips were collected and analyzed for each of the cutting conditions. The same procedure was followed during machining with the same tool which was denied the ability to rotate, therefore simulating a fixed tool with identical cutting conditions. Comparisons were made between tool life, surface roughness, and chip formation for the fixed tool and SPRT. Tool rotational speed was also analyzed for the SPRT. In general, the designed and prototyped SPRT showed very good performance and validated the advantages of self-propelled rotary tools.
A typical automotive component that is hard turned from difficult-to-cut materials is a transmission input shaft. These components demand high strength and wear resistance as they couple the vehicle‟s engine power to the transmission and remaining driveline. / UOIT
|
3 |
Machining of Some Difficult-to-Cut Materials with Rotary Cutting ToolsStjernstoft, Tero January 2004 (has links)
<p>Automobile and aero industries have an increasing interestin materials with improved mechanical properties. However, manyof these new materials are classified as difficult-to-cut withconventional tools. It is obvious that tools, cutting processesand cutting models has to be devel-oped parallel to materialsscience. In this thesis rotary cutting tools are tested as analternative toexpensive diamond or cubic bore nitridetools.</p><p>Metal matrix composites mostly consist of a light metalalloy (such as aluminium or titanium) reinforced with hard andabrasive ceramic parti-cles or fibres. On machining, thereinforcement results in a high rate of tool wear. This is themain problem for the machining of MMCs. Many factors affect thelife length of a tool, i.e. matrix alloy, type, size andfraction of the reinforcement, heat treatment, cuttingconditions and tool properties.</p><p>In tests, the Al-SiC MMC formed a deformation layer duringmilling, probably affected by lack of cooling. The dominatingfactor for tool life was the cutting speed. Water jet or CO2cooling of turning did not provide dramatic increase in toollife. With PCD, cutting speeds up to 2000 m/min were usedwithout machining problems and BUE formation. Tool flank wearwas abrasive and crater wear created an "orange-peel type" wearsurface. PCD inserts did not show the typical increase in flankwear rate at the end of its lifetime.</p><p>The use of self-propelled rotary tools seems to be apromising way to increase tool life. No BUE was formed on therotary tool at high cutting data. The measurements indicatethat the rotary tool creates twice as good surface as PCDtools. The longest tool life was gained with an inclinationangle of 10 degrees. Tool costs per component will beapproximately the same, but rotary cutting tool allows higherfeeds and therefore a higher production rate and thus a lowerproduction cost.</p><p>The rotary cutting operation might have a potential toincrease productiv-ity in bar peeling. The lack of BUE withrotary cutting gives hope on higher tool life. The test resultsshow that tool wear was 27% lower with rotary cutting tools.Increase of cutting speed from 22 to 44 m/min did not affectcutting forces. This indicates that the cutting speed canincrease without significant change in tool wear rate.</p><p>Issues related to rotary cutting like cutting models,cutting processes, standards, tools and models have beendiscussed. A tool wear model with kinetic energy has beendiscussed.</p><p><b>KEYWORDS:</b>Difficult-to-Cut material, Metal MatrixComposite (MMC), Machining, Machinability, Rotary Cutting Tool,Acoustic Emission</p>
|
Page generated in 0.0785 seconds