• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting Moment and Rotation Capacity of Semi-rigid Composite Joints with Precast Hollowcore Slabs

Lam, Dennis, Fu, F., Ye, J. January 2009 (has links)
No
2

Moment resistance and rotation capacity of semi-rigid composite connections with precast hollowcore slabs.

Fu, F., Lam, Dennis, Ye, J. January 2010 (has links)
Semi-rigid composite connections with precast hollowcore slabs are a newly developed technique with few applications in current construction practice. The research on the structural behaviour of this new type of connection is limited, with no existing method available to predict its important characteristics such as moment and rotation capacities. In this paper, based on the parametric studies of the three-dimensional finite element model and full-scale tests, analytical methods to calculate the moment and rotation capacity of this type of composite joint are proposed. A comparison between the proposed calculation method and the full-scale test results was made, and good agreement was obtained.
3

Structural behaviour of concrete-filled elliptical column to I-beam connections

Yang, Jie January 2017 (has links)
Concrete-filled tubular (CFT) columns have been widely adopted in building structures owing to their superior structural performance, such as enhanced load bearing capacity, compared to hollow tubes. Circular, square and rectangular hollow sections are most commonly used in the past few decades. Elliptical hollow section (EHS) available recently is regarded as a new cross-section for the CFT columns due to its attractive appearance, optional orientation either on major axis or minor axis and improved structural efficiency. The state of the research in terms of elliptical columns, tubular joints between EHSs and connections with CFT columns, etc., are reviewed in this thesis, showing a lack of investigations on EHSs, especially on beam to elliptical column connections which are essential in framed structures. The structural behaviour of elliptical column to I-beam connections under bending is studied in this thesis to fill the research gap. Overall ten specimens with various joint assemblies were tested to failure to highlight the benefits of adopting concrete infill and stiffeners in the columns. A three-dimensional finite element model developed by using ABAQUS software is presented and verified against obtained experimental results, which shows acceptable accuracy and reliability in predicting failure modes of the connections and their moment capacities. Parametric studies were performed to access the main parameters that affecting the bending behaviour of the connections. A simple hand calculation method in terms of ultimate moment capacity is proposed according to experiments conducted for connections with concrete-filled columns.
4

Structural Behaviour of Concrete-filled Elliptical Column to I-beam Connections

Yang, Jie January 2017 (has links)
Concrete-filled tubular (CFT) columns have been widely adopted in building structures owing to their superior structural performance, such as enhanced load bearing capacity, compared to hollow tubes. Circular, square and rectangular hollow sections are most commonly used in the past few decades. Elliptical hollow section (EHS) available recently is regarded as a new cross-section for the CFT columns due to its attractive appearance, optional orientation either on major axis or minor axis and improved structural efficiency. The state of the research in terms of elliptical columns, tubular joints between EHSs and connections with CFT columns, etc., are reviewed in this thesis, showing a lack of investigations on EHSs, especially on beam to elliptical column connections which are essential in framed structures. The structural behaviour of elliptical column to I-beam connections under bending is studied in this thesis to fill the research gap. Overall ten specimens with various joint assemblies were tested to failure to highlight the benefits of adopting concrete infill and stiffeners in the columns. A three-dimensional finite element model developed by using ABAQUS software is presented and verified against obtained experimental results, which shows acceptable accuracy and reliability in predicting failure modes of the connections and their moment capacities. Parametric studies were performed to access the main parameters that affecting the bending behaviour of the connections. A simple hand calculation method in terms of ultimate moment capacity is proposed according to experiments conducted for connections with concrete-filled columns.
5

A influência da não-linearidade física do concreto armado na rigidez à flexão e na capacidade de rotação plástica. / The influence of physical non-linearity of the reinforced concrete on flexural rigidity and on plastic rotation capacity.

Buchaim, Roberto 18 July 2001 (has links)
O presente trabalho é uma contribuição para o esclarecimento e a quantificação das influências na deformabilidade e na capacidade portante de elementos unidimensionais de concreto armado em solicitação plana, decorrentes da não-linearidade física dos materiais concreto e aço, bem como da fissuração e do enrijecimento da armadura tracionada, também na sua fase plástica. Para aplicações práticas determinam-se a rigidez à flexão e a capacidade de rotação plástica dos elementos estruturais, o que permite limitar com mais precisão e coerência a demanda de rotação plástica obtida na análise. De início, descrevem-se os comportamentos não-lineares do concreto e do aço, aplicando-se conceitos da Mecânica da Fratura, bem como a atuação conjunta destes materiais, sob os aspectos de aderência e de fissuração. O núcleo deste trabalho concentra-se na obtenção do diagrama momento-curvatura e dos seus pontos principais, e na subseqüente determinação da capacidade de rotação plástica dos mencionados elementos. Consideram-se as seções geradas a partir da seção duplo T assimétrico, com várias camadas de armadura, sujeitas à flexão composta normal. Com dados deste diagrama e através do modelo da viga equivalente simétrica, posteriormente estendido à viga equivalente assimétrica e às vigas contínuas de pórticos planos, determina-se a capacidade de rotação plástica, considerando-se nesta suas múltiplas influências. Por fim, comparam-se os resultados teóricos e experimentais da capacidade de rotação plástica, e resumem-se as principais conclusões encontradas e os pontos que exigem subseqüente desenvolvimento. / The present study is a contribution to the enlightenment and evaluation of the influences on deformability and load carrying capacity of one-dimensional elements of reinforced concrete subject to in-plane loading, arisen from the constitutive non-linearity of concrete and steel, as well as from the concrete cracking and the tension stiffening of the reinforcement, prior and after yielding. For practical applications, the flexural rigidity and the plastic rotation capacity of structural elements are determined, which makes it possible to limit, more precisely and coherently, the plastic rotation demand coming from the analysis. Firstly, the non-linear behaviors of concrete and steel are described, applying concepts of Fracture Mechanics, and then the joint action of both materials concerning bond and cracking is studied. The core of this study lies on obtaining the bending moment-curvature diagram, specially its main points, and on the subsequent determination of the plastic rotation capacity of the aforementioned elements. The cross-sections generated from an asymmetric double T cross-section are considered, with several layers of reinforcement, acted upon simple or combined bending about one principal axis. With data based on this diagram and through the model of equivalent symmetric beam, later extended to equivalent asymmetric beam and to continuous beams of plane frames, the plastic rotation capacity is determined, considering its multiple influences. Finally, theoretical and experimental results of plastic rotation capacity are compared, and the main conclusions and points in need of subsequent development are summarized.
6

A influência da não-linearidade física do concreto armado na rigidez à flexão e na capacidade de rotação plástica. / The influence of physical non-linearity of the reinforced concrete on flexural rigidity and on plastic rotation capacity.

Roberto Buchaim 18 July 2001 (has links)
O presente trabalho é uma contribuição para o esclarecimento e a quantificação das influências na deformabilidade e na capacidade portante de elementos unidimensionais de concreto armado em solicitação plana, decorrentes da não-linearidade física dos materiais concreto e aço, bem como da fissuração e do enrijecimento da armadura tracionada, também na sua fase plástica. Para aplicações práticas determinam-se a rigidez à flexão e a capacidade de rotação plástica dos elementos estruturais, o que permite limitar com mais precisão e coerência a demanda de rotação plástica obtida na análise. De início, descrevem-se os comportamentos não-lineares do concreto e do aço, aplicando-se conceitos da Mecânica da Fratura, bem como a atuação conjunta destes materiais, sob os aspectos de aderência e de fissuração. O núcleo deste trabalho concentra-se na obtenção do diagrama momento-curvatura e dos seus pontos principais, e na subseqüente determinação da capacidade de rotação plástica dos mencionados elementos. Consideram-se as seções geradas a partir da seção duplo T assimétrico, com várias camadas de armadura, sujeitas à flexão composta normal. Com dados deste diagrama e através do modelo da viga equivalente simétrica, posteriormente estendido à viga equivalente assimétrica e às vigas contínuas de pórticos planos, determina-se a capacidade de rotação plástica, considerando-se nesta suas múltiplas influências. Por fim, comparam-se os resultados teóricos e experimentais da capacidade de rotação plástica, e resumem-se as principais conclusões encontradas e os pontos que exigem subseqüente desenvolvimento. / The present study is a contribution to the enlightenment and evaluation of the influences on deformability and load carrying capacity of one-dimensional elements of reinforced concrete subject to in-plane loading, arisen from the constitutive non-linearity of concrete and steel, as well as from the concrete cracking and the tension stiffening of the reinforcement, prior and after yielding. For practical applications, the flexural rigidity and the plastic rotation capacity of structural elements are determined, which makes it possible to limit, more precisely and coherently, the plastic rotation demand coming from the analysis. Firstly, the non-linear behaviors of concrete and steel are described, applying concepts of Fracture Mechanics, and then the joint action of both materials concerning bond and cracking is studied. The core of this study lies on obtaining the bending moment-curvature diagram, specially its main points, and on the subsequent determination of the plastic rotation capacity of the aforementioned elements. The cross-sections generated from an asymmetric double T cross-section are considered, with several layers of reinforcement, acted upon simple or combined bending about one principal axis. With data based on this diagram and through the model of equivalent symmetric beam, later extended to equivalent asymmetric beam and to continuous beams of plane frames, the plastic rotation capacity is determined, considering its multiple influences. Finally, theoretical and experimental results of plastic rotation capacity are compared, and the main conclusions and points in need of subsequent development are summarized.
7

Energy Based Seismic Performance Assessment Of Reinforced Concrete Columns

Acun, Bora 01 March 2010 (has links) (PDF)
Severe seismic events in urban regions during the last two decades revealed that the structures constructed before the development of modern seismic codes are the most vulnerable to earthquakes. Sub-standard reinforced concrete buildings constitute an important part of this highly vulnerable urban building stock. There is urgent need for the development and improvement of methods for seismic performance assessment of existing reinforced concrete structures. As an alternative to current conventional force-based assessment methods, a performance evaluation procedure for structural members, mainly reinforced concrete columns is proposed in this study, by using an energy-based approach combined with the low cycle fatigue concept. An energy-based hysteresis model is further introduced for representing the inelastic response of column members under severe seismic excitations. The shape of the hysteresis loops are controlled by the dissipated cumulative energy whereas the ultimate strength is governed by the low cycle fatigue behavior. These two basic characteristics are obtained experimentally from full scale specimens tested under constant and variable amplitude displacement cycles. The first phase of the experimental program presented in the study constitutes of testing sub-standard non-conforming column specimens. The second phase of testing was conducted on standard, code compliant reinforced concrete columns. A total number of 13 specimens were tested. The behavior of these specimens was observed individually and comparatively according to the performance based objectives. The results obtained from the experiments were employed for developing relations between the energy dissipation capacity of specimens, the specimen properties as well as the imposed displacement history. Moreover, the measured rotation capacities at the plastic regions are evaluated comparatively with the limits proposed by modern displacement-based seismic design and assessment provisions.
8

The Plastic Behaviour of Cold-Formed Rectangular Hollow Sections

Wilkinson, Timothy James January 2000 (has links)
The aim of this thesis is to assess the suitability of cold-formed rectangular hollow sections (RHS) for plastic design. The project involved an extensive range of tests on cold-formed Grade C350 and Grade C450 (DuraGal) RHS beams, joints and frames. A large number of finite element analyses was also carried out on models of RHS beams. The conclusion is that cold- formed RHS can be used in plastic design, but stricter element slenderness (b/t) limits and consideration of the connections, are required. Further research, particularly into the effect of axial compression on element slenderness limits, is required before changes to current design rules can be finalised. Bending tests were performed on cold-formed RHS to examine the web and flange slenderness required to maintain the plastic moment for a large enough rotation suitable for plastic design. The major conclusions of the beam tests were: (i) Some sections which are classified as Compact or Class 1 by current steel design specifications do not maintain plastic rotations considered sufficient for plastic design. (ii) The current design philosophy, in which flange and web slenderness limits are independent, is inappropriate. An interaction formula is required, and simple formulations are proposed for RHS. Connection tests were performed on various types of knee joints in RHS, suitable for the column - rafter connection in a portal frame. The connection types investigated were welded stiffened and unstiffened rigid knee connections, bolted plate knee joints, and welded and bolted internal sleeve knee joints, for use in RHS portal frames. The ability of the connections to act as plastic hinges in a portal frame was investigated. The most important finding of the joint tests was the unexpected fracture of the cold-formed welded connections under opening moment before significant plastic rotations occurred. The use of an internal sleeve moved the plastic hinge in the connection away from the connection centre- line thus eliminating the need for the weld between the RHS, or the RHS and the stiffening plate, to carry the majority of the load. The internal sleeve connections were capable of sustaining the plastic moment for large rotations considered suitable for plastic design. Tests on pinned-base portal frames were also performed. There were three separate tests, with two different ratios of vertical to horizontal point loads, simulating gravity and horizontal wind loads. Two grades of steel were used for comparison. The aims of the tests were to examine if a plastic collapse mechanism could form in a cold-formed RHS frame, and to investigate if plastic design was suitable for such frames. In each frame, two regions of highly concentrated curvature were observed before the onset of local buckling, which indicated the formation of plastic hinges and a plastic collapse mechanism. An advanced plastic zone structural analysis which accounted for second order effects, material non-linearity and member imperfections slightly overestimated the strength of the frames. The analysis slightly underestimated the deflections, and hence the magnitude of the second order effects. A second order plastic zone analysis, which did not account for the effects of structural imperfections, provided the best estimates of the strengths of the frames, but also underestimated the deflections. While cold-formed RHS did not satisfy the material ductility requirements specified for plastic design in some current steel design standards, plastic hinges and plastic collapse mechanisms formed. This suggests that the restriction on plastic design for cold-formed RHS based on insufficient material ductility is unnecessary, provided that the connections are suitable for plastic hinge formation, if required. A large number of finite element analyses were performed to simulate the bending tests summarised above, and to examine various parameters not studied in the experimental investigation. To simulate the experimental rotation capacity of the RHS beams, a sinusoidally varying longitudinal local imperfection was prescribed. The finite element analysis determined similar trends as observed experimentally, namely that the rotation capacity depended on both the web slenderness and flange slenderness, and that for a given section aspect ratio, the relationship between web slenderness and rotation capacity was non-linear. The main finding of the finite element study was that the size of the imperfections had an unexpectedly large influence on the rotation capacity. Larger imperfections were required in the more slender sections to simulate the experimental results. There should be further investigation into the effect of varying material properties on rotation capacity.
9

The Plastic Behaviour of Cold-Formed Rectangular Hollow Sections

Wilkinson, Timothy James January 2000 (has links)
The aim of this thesis is to assess the suitability of cold-formed rectangular hollow sections (RHS) for plastic design. The project involved an extensive range of tests on cold-formed Grade C350 and Grade C450 (DuraGal) RHS beams, joints and frames. A large number of finite element analyses was also carried out on models of RHS beams. The conclusion is that cold- formed RHS can be used in plastic design, but stricter element slenderness (b/t) limits and consideration of the connections, are required. Further research, particularly into the effect of axial compression on element slenderness limits, is required before changes to current design rules can be finalised. Bending tests were performed on cold-formed RHS to examine the web and flange slenderness required to maintain the plastic moment for a large enough rotation suitable for plastic design. The major conclusions of the beam tests were: (i) Some sections which are classified as Compact or Class 1 by current steel design specifications do not maintain plastic rotations considered sufficient for plastic design. (ii) The current design philosophy, in which flange and web slenderness limits are independent, is inappropriate. An interaction formula is required, and simple formulations are proposed for RHS. Connection tests were performed on various types of knee joints in RHS, suitable for the column - rafter connection in a portal frame. The connection types investigated were welded stiffened and unstiffened rigid knee connections, bolted plate knee joints, and welded and bolted internal sleeve knee joints, for use in RHS portal frames. The ability of the connections to act as plastic hinges in a portal frame was investigated. The most important finding of the joint tests was the unexpected fracture of the cold-formed welded connections under opening moment before significant plastic rotations occurred. The use of an internal sleeve moved the plastic hinge in the connection away from the connection centre- line thus eliminating the need for the weld between the RHS, or the RHS and the stiffening plate, to carry the majority of the load. The internal sleeve connections were capable of sustaining the plastic moment for large rotations considered suitable for plastic design. Tests on pinned-base portal frames were also performed. There were three separate tests, with two different ratios of vertical to horizontal point loads, simulating gravity and horizontal wind loads. Two grades of steel were used for comparison. The aims of the tests were to examine if a plastic collapse mechanism could form in a cold-formed RHS frame, and to investigate if plastic design was suitable for such frames. In each frame, two regions of highly concentrated curvature were observed before the onset of local buckling, which indicated the formation of plastic hinges and a plastic collapse mechanism. An advanced plastic zone structural analysis which accounted for second order effects, material non-linearity and member imperfections slightly overestimated the strength of the frames. The analysis slightly underestimated the deflections, and hence the magnitude of the second order effects. A second order plastic zone analysis, which did not account for the effects of structural imperfections, provided the best estimates of the strengths of the frames, but also underestimated the deflections. While cold-formed RHS did not satisfy the material ductility requirements specified for plastic design in some current steel design standards, plastic hinges and plastic collapse mechanisms formed. This suggests that the restriction on plastic design for cold-formed RHS based on insufficient material ductility is unnecessary, provided that the connections are suitable for plastic hinge formation, if required. A large number of finite element analyses were performed to simulate the bending tests summarised above, and to examine various parameters not studied in the experimental investigation. To simulate the experimental rotation capacity of the RHS beams, a sinusoidally varying longitudinal local imperfection was prescribed. The finite element analysis determined similar trends as observed experimentally, namely that the rotation capacity depended on both the web slenderness and flange slenderness, and that for a given section aspect ratio, the relationship between web slenderness and rotation capacity was non-linear. The main finding of the finite element study was that the size of the imperfections had an unexpectedly large influence on the rotation capacity. Larger imperfections were required in the more slender sections to simulate the experimental results. There should be further investigation into the effect of varying material properties on rotation capacity.

Page generated in 0.0919 seconds