• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyzing Rotational Bands in Odd-Mass Nuclei Using Effective Field Theory and Bayesian Methods

Alnamlah, Ibrahim Khaled I. 16 September 2022 (has links)
No description available.
2

Gamma spectroscopy and lifetime measurements in the doubly-odd 194tl nucleus, revealing possible chiral symmetry breaking

Masiteng, Paulus Lukisi January 2013 (has links)
Philosophiae Doctor - PhD / In the first experiment high spin states in 194Tl, excited through the 181Ta (18O, 5n) heavyion fusion evaporation reaction were studied using the AFRODITE array at iThemba LABS. The γ-γ coincidences, RAD ratios and linear polarization measurements were carried out and the previously known level scheme of 194Tl was significantly extended. A total of five rotational bands four of which are new were observed. A pair of rotational bands associated with the πh9/2 ⊗ νi−1 13/2 configuration at lower spins and with the πh9/2 ⊗ νi−3 13/2 configuration at higher spins was found and interpreted as the first possible chiral bands followed above the band crossing. The two 4-quasiparticle bands show exceptionally close near-degeneracy in the excitation energies. Furthermore close similarity is also found in their alignments and B(M1)/B(E2) reduced transition probability ratios. In the second experiment lifetimes in 194Tl were measured using the DSAM technique with the excited states in this nucleus populated through the 181Ta (18O, 5n) reaction. A total of 25 lifetimes and 30 reduced transition probabilities of magnetic dipole B(M1) and electric quadrupole B(E2) have been evaluated. Furthermore B(M1) and B(E2) reduced transition probabilities in Bands 1 and 4, which have been regarded as chiral candidates, were found to be close to each other and reveals strong splitting along spin values. This further supports the proposed chiral nature of these two bands.

Page generated in 0.116 seconds