• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an Efficient Viscous Approach in a Cartesian Grid Framework and Application to Rotor-Fuselage Interaction

Lee, Jae-doo 18 May 2006 (has links)
Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and shock or vortex capturing by solution adaption. Since the geometry and flow phenomenon of a helicopter are very complex, unstructured grid-based methods are well-suited to model properly the rotor-fuselage interaction than the structured grid solver. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which increases the accuracy and minimizes unphysical fluctuations of the flow properties. The standard k-epsilon model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. It is quite challenging and has never done before to apply wall function approach to immersed Cartesian grid. The difficulty lies in the inability to acquire smooth variation of y+ in the desired range due to the non-body-fitted cells near the solid wall. The wall function boundary condition developed in this work yields stable and reasonable solution within the accuracy of the turbulence model. The grid efficiency is also improved with respect to the conventional method. The turbulence modeling is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, axisymmetric hemispheroid, and rotorcraft applications. For rotor modeling, an actuator disk model is chosen, since it is efficient and is widely verified in the study of the rotor-fuselage interaction. This model considers the rotor as an infinitely thin disk, which carries pressure jump across the disk and allows flow to pass through it. The full three dimensional calculations of Euler and RANS equations are performed for the GT rotor model and ROBIN configuration to test implemented actuator disk model along with the developed turbulence modeling. Finally, the characteristics of the rotor-fuselage interaction are investigated by comparing the numerical solutions with the experiments.

Page generated in 0.0559 seconds