Spelling suggestions: "subject:"motor fatigue"" "subject:"rotor fatigue""
1 |
An Integrated Design Approach of Rotor Assembly for Radial Flux Surface-Mounted Permanent Magnet Synchronous MotorsManikandan, Akshay January 2023 (has links)
Enhancing the dependability and power density of a SPMSMs is crucial for its extensive utilization in the automotive and aerospace sectors. One major concern regarding these machines is the significant thermo-mechanical loads experienced by the overall rotating assembly due to high rotational speeds and a wide operational temperature range from $50^\circ C$ to $150^\circ C$. This poses a considerable challenge in maintaining structural integrity among the components. Redesigning components to reduce assembly complexity and weight necessitates careful consideration of boundary conditions and contact modeling to prevent catastrophic failures like magnet fly-by conditions. To reduce model complexity, a simplified approach involves integrating the hub and shaft; both machined from AISI 4340. Additionally, the application of a carbon fiber sleeve is investigated through 3-dimensional composite modeling to enhance structural integrity. The primary objective of this thesis is to scientifically justify the design and validation of an integrated rotor hub and shaft using efficient FEM and integration strategies, with the aim of maximizing the durability of a $150kW$ radial flux SPMSMs spinning at $20,000 rpm$. The integrated topology optimization is evaluated using a multiphysics platform alongside studies on motor assembly eigenfrequency. By employing the integrated approach and utilizing AISI 4340 for both the shaft and rotor hub, a weight reduction of $1.84kg$ is achieved, eliminating the need for standard components such as balancing end clamp plates, locknuts, and washers. Furthermore, introducing a carbon fiber sleeve enhances structural integrity, thereby reducing adhesive stress. The design and optimization of the rotating components ensure that the maximum von Mises stress is $50\%$ lower than the material's yield strength. Reduced masses lead to lower centrifugal forces, thereby diminishing radial stress and promoting component and assembly stiffness. / Thesis / Master of Applied Science (MASc) / This thesis aims to increase the reliability and power density of a surface-mounted permanent magnet synchronous machine (SPMSMs), a commonly used traction motor in the automotive and aerospace industries. One of these machines' main challenges is designing their components to withstand the high mechanical loads caused by their fast rotational speeds. The studies performed in this thesis use a computer modeling technique called Finite Element Modeling (FEM) to strategize and design an integrated rotor hub/shaft by maximizing the durability of a 150kW radial flux SPMSMs rotating at 20,000 rpm. Upon evaluating the integrated design using a variety of physics-based simulations, the design was found to save 1.84kg in weight, reducing centrifugal forces and improving the overall stiffness of the motor assembly. This research could lead to more efficient and durable electric SPMSMs for various applications.
|
Page generated in 0.0362 seconds