• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation and prediction of loads in marine current turbine full-scale rotor blades

Unknown Date (has links)
Marine current turbines are submerged structures and subjected to loading conditions from both the currents and wave effects. The associated phenomena posed significant challenge to the analyses of the loading response of the rotor blades and practical limitations in terms of device location and operational envelopes. The effect of waves on marine current turbines can contribute to the change of flow field and pressure field around the rotor and hence changes the fluid forces on the rotor. However, the effect of the waves on the rotor depends on the magnitude and direction of flow velocity that is induced by the waves. An analysis is presented for predicting the torque, thrust, and bending moments resulting from the wave-current interactions at the root of rotor blades in a horizontal axis marine current turbine using the blade element-momentum (BEM) theory combined with linear wave theory. Parametric studies are carried out to better understand the influence of important parameters , which include wave height, wave frequency, and tip-speed ratio on the performance of the rotor. The periodic loading on the blade due to the steady spatial variation of current speeds over the rotor swept area is determined by a limited number of parameters, including Reynolds number, lift and drag coefficients, thrust and torque coefficients, and power coefficient. The results established that the BEM theory combined with linear wave theory can be used to analyze the wavecurrent interactions in full-scale marine current turbine. The power and thrust coefficients can be analyzed effectively using the numerical BEM theory in conjunction with corrections to the tip loss coefficient and 3D effects. / It has been found both thrust and torque increase as the current speed increases, and in longer waves the torque is relatively sensitive to the variation of wave height. Both in-plane and out-of-plane bending moments fluctuate significantly and can be predicted by linear wave theory with blade element-momentum theory. / by Junior Senat. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
2

Numerical performance prediction for FAU's first generation ocean current turbine

Unknown Date (has links)
This thesis presents the analytically predicted position, motion, attitude, power output and forces on Florida Atlantic University's (FAU) first generation ocean current turbine for a wide range of operating conditions. These values are calculated using a 7- DOF dynamics simulation of the turbine and the cable that attaches it to the mooring system. The numerical simulation modifications and upgrades completed in this work include developing a wave model including the effects of waves into the simulation, upgrading the rotor model to specify the number of blades and upgrading the cable model to specify the number of cable elements. This enhanced simulation is used to quantify the turbine's performance in a wide range of currents, wave fields and when stopping and starting the rotor. For a uniform steady current this simulation predicts that when the rotor is fixed in 1.5 m/s current the drag on the turbine is 3.0 kN, the torque on the rotor is 384 N-m, the turbine roll and pitch are 2.4º and -1.2º . When the rotor is allowed to spin up to the rotational velocity where the turbine produces maximum power, the turbine drag increases to 7.3 kN, the torque increases to 1482 N-m, the shaft power is 5.8 kW, the turbine roll increases to 9º and the turbine pitch stays constant. Subsequently, a sensitivity analysis is done to evaluate changes in turbine performance caused by changes in turbine design and operation. This analysis show, among other things, that a non-axial flow on the turbine of up to 10º has a minimal effect on net power output and that the vertical stable position of the turbine varies linearly with the weight/buoyancy of the turbine with a maximum variation of 1.77 m for each increase or decrease of 1 kg at a current speed of 0.5 m/s. / by Nicolas Vanrietvelde. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
3

Model analysis of a mooring system for an ocean current turbine testing platform

Unknown Date (has links)
In response to Florida's growing energy needs and drive to develop renewable power, Florida Atlantic Universitys Center for Ocean Energy Technology (COET) plans to moor a 20 kW test turbine in the Florida Current. No permanent mooring systems for deepwater hydrokinetic turbines have been constructed and deployed, therefore little if anything is known about the performance of these moorings. To investigate this proposed mooring system, a numeric model is developed and then used to predict the static and dynamic behavior of the mooring system and attachments. The model has been created in OrcaFlex and includes two surface buoys and an operating turbine. Anchor chain at the end of the mooring line develops a catenary, providing compliance. Wind, wave, and current models are used to represent the environmental conditions the system is expected to experience and model the dynamic effects on the system. The model is then used to analyze various components of the system. The results identify that a mooring attachment point 1.25 m forward of the center of gravity on the mooring buoy is ideal, and that the OCDP and turbine tether lengths should be no shorter than 25 and 44 m, respectively. Analysis performed for the full system identify that the addition of the floats decreases the tension at the MTB attachment location by 26.5 to 29.5% for minimum current, and 0.10 to 0.31% for maximum current conditions. / by Allison Rose Cribbs. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
4

Design and analysis of an ocean current turbine performance assessment system

Unknown Date (has links)
This thesis proposes a sensor approach for quantifying the hydrodynamic performance of Ocean Current Turbines (OCT), and investigates the influence of sensor-specific noise and sampling rates on calculated turbine performance. Numerical models of the selected sensors are developed, and then utilized to add stochastic measurement error to numerically-generated, non-stochastic OCT data. Numerically-generated current velocity and turbine performance measurements are used to quantify the relative influence of sensor-specific error and sampling limitations on sensor measurements and calculated OCT performance results. The study shows that the addition of sensor error alters the variance and mean of OCT performance metric data by roughly 7.1% and 0.24%, respectively, for four evaluated operating conditions. It is shown that sensor error results in a mean, maximum and minimum performance metric to Signal to Noise Ration (SNR) of 48.6% and 6.2%, respectively. / by Matthew T. Young. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
5

Finite element based rotor design optimization for the brushless doubly-fed machine

Salim, Mohamed Ali, 1968- 13 April 1993 (has links)
Brushless Doubly-Fed Machines have potential benefits in variable speed generation and adjustable speed drive applications by combining a robust machine structure with a reduced power converter rating. While recent work has demonstrated feasibility, steady-state performance has not been optimized. The nature of doubly-fed operation causes rotor currents of varying, relatively high frequency. Moreover, the rotor structure deviates from conventional squirrel cages. Consequently, induction machine rotor bar geometries need to be carefully examined and refined for applicability in the doubly-fed system. The present thesis uses finite element analysis to investigate alternative rotor bar design. Two-dimensional finite element analysis is used to investigate basic rotor bar characteristics. Interface with a detailed simulation program enables investigation of assembled rotors, otherwise a three-dimensional analysis problem. Rotor bar geometries for a high speed alternator are investigated. Bar shapes are kept simple to allow manufacturing of the rotor in the absence of the-casting equipment. Rotor prototypes are constructed using custom, laser-cut laminations and experimental results for the alternator verify improved line-to-shaft efficiencies over conventional rotor geometries as well as off-the-shelf alternators. / Graduation date: 1994

Page generated in 0.1027 seconds