Spelling suggestions: "subject:"found jet"" "subject:"sound jet""
1 |
LES Study Of Free Jets And Jets Impinging On Cuboidal CavityVaradharajan, Ramanathan 22 June 2016 (has links) (PDF)
Numerical solutions based on explicit filtered LES for computing turbulent flow field, of free round jets and impinging round jet on cuboidal cavities, are presented and discussed in this dissertation work. One-parameter fourth-order explicit filter is implemented to account for sub-grid scale effects. Compact difference schemes proposed by Hixon & Turkel involving
only bidiagonal matrices is used to evaluate spatial derivatives. Compact schemes with overall fourth order accuracy and eight order accuracy are used in simulating free and impinging jets respectively. Simulations of free round jets are used for validating LES approach. 6 simulations of free round jet, in three levels of computational grids at three different Reynolds number, are performed to understand the effects of Reynolds number and turbulent length scales. Energy in the smaller length scales are found to be higher for higher Reynolds number. Potential core collapse is found to occur at shorter distance for high Reynolds number jets. Accurate computation of smaller length scales of turbulence is found to be essential for high Reynolds number flows. LES of subsonic impinging jets are performed on cuboidal cavities to understand the physical phenomenon. High intensity, low
frequency sounds are captured, in the presence of cavity, as reported by other research works. Lip-thickness is found to have an effect on the intensity of sound produced. Matching of Jet shear layer roll up frequency with cavity’s natural frequency to produce resonance phenomenon is attempted and observations are presented.
|
2 |
CFD Analysis of Turbulent Twin Impinging Axisymmetric Jets at Low Reynolds NumberGopalakrishnan, Raj Narayan January 2017 (has links)
No description available.
|
3 |
Large Eddy Simulation of Free and Impinging Subsonic Jets and their Sound FieldsSubramanian, G January 2014 (has links) (PDF)
Evaluating aerodynamic noise from aircraft engines is a design stage process, so that it conform to regulations at airports. Aerodynamic noise is also a principal source of structural vibration and internal noise in short/vertical take off and landing and rocket launches. Acoustic loads may be critical for the proper functioning of electronic and mechanical components. It is imperative to have tools with capability to predict noise generation from turbulent flows. Understanding the mechanism of noise generation is essential in identifying methods for noise reduction.
Lighthill (1952) and Lighthill (1954) provided the first explanation for the mechanism of aerodynamic noise generation and a procedure to estimate the radiated sound field. Many such procedures, known as acoustic analogies are used for estimating the radiated sound field in terms of the turbulent fluid flow properties. In these methods, the governing equations of the fluid flow are rearranged into two parts, the acoustic sources and the propagation terms. The noise source terms and propagation terms are different in different approaches. A good description of the turbulent flow field and the noise sources is required to understand the mechanism of noise generation.
Computational aeroacoustics (CAA) tools are used to calculate the radiated far field noise. The inputs to the CAA tools are results from CFD simulations which provide details of the turbulent flow field and noise sources. Reynolds-Averaged Navier Stokes (RANS) solutions can be used as inputs to CAA tools which require only time-averaged mean quantities. The output of such tools will also be mean quantities. While complete unsteady turbulent flow details can be obtained from Direct Numerical Simulation (DNS), the computation is limited to low or moderate Reynolds number flows. Large eddy simulations (LES) provide accurate description for the dynamics of a range of large scales. Most of the kinetic energy in a turbulent flow is accounted by the large-scale structures. It is also the large-scale structures which accounts for the maximum contribution towards the radiated sound field. The results from LES can be used as an input to a suitable CAA tool to calculate the sound field.
Numerical prediction of turbulent flow field, the acoustic sources and the radiated sound field is at the focus of this study. LES based on explicit filtering method is used for the simulations. The method uses a low-pass compact filter to account for the sub-grid scale effects. A one-parameter fourth-order compact filter scheme from Lele (1992) is used for this purpose. LES has been carried out for four different flow situations: (i) round jet (ii) plane jet (iii) impinging round jet and (iv) impinging plane jet. LES has been used to calculate the unsteady flow evolution of these cases and the Lighthill’s acoustic sources. A compact difference scheme proposed by Hixon & Turkel (1998) which involves only bi-diagonal matrices are used for evaluating spatial derivatives. The scheme provides similar spectral resolution as standard tridiagonal compact schemes for the first spatial derivatives. The scheme is computationally less intensive as it involves only bi-diagonal matrices. Also, the scheme employs only a two-point stencil.
To calculate the radiated sound field, the Helmholtz equation is solved using the Green’s function approach, in the form of the Kirchhoff-Helmholtz integral. The integral is performed over a surface which is present entirely in the linear region and covers the volume where acoustic sources are present. The time series data of pressure and the normal component of the pressure gradient on the surface are obtained from the CFD results. The Fourier transforms of the time series of pressure and pressure gradient are then calculated and are used as input for the Kirchhoff-Helmholtz integral.
The flow evolution for free jets is characterised by the growth of the instability waves in the shear layer which then rolls up into large vortices. These large vortical structures then break down into smaller ones in a cascade which are convected downstream with the flow. The rms values of the Lighthill’s acoustic sources showed that the sources are located mainly at regions immediately downstream of jet break down. This corresponds to the large scale structures at break down.
The radiated sound field from free jets contains two components of noise from the large scales and from the small scales. The large structures are the dominant source for the radiated sound field. The contribution from the large structures is directional, mainly at small angles to the downstream direction. To account for the difference in jet core length, the far field SPL are calculated at points suitably shifted based on the jet core length. The peak value for the radiated sound field occurs between 30°and 35°as reported in literature.
Convection of acoustic sources causes the radiated sound field to be altered due to Doppler effect. Lighthills sources along the shear layer were examined in the form of (x, t) plots and phase velocity pattern in (ω, k) plots to analyse for their convective speeds. These revealed that there is no unique convective speeds for the acoustic sources. The median convective velocity Uc of the acoustic sources in the shear layer is proportional to the jet velocity Uj at the center of the nozzle as Uc ≈ 0.6Uj.
Simulations of the round jet at Mach number 0.9 were used for validating the LES approach. Five different cases of the round jet were used to understand the effect of Reynolds number and inflow perturbation on the flow, acoustic sources and the radiated sound field. Simulations were carried out for an Euler and LES at Reynolds number 3600 and 88000 at two different inflow perturbations. The LES results for the mean flow field, turbulence profiles and SPL directivity were compared with DNS of Freund (2001) and experimental data available in literature. The LES results showed that an increase in inflow forcing and higher Reynolds number caused the jet core length to reduce. The turbulent energy spectra showed that the energy content in smaller scale is higher for higher Reynolds number.
LES of plane jets were carried out for two different cases, one with a co-flow and one without co-flow. LES of plane jets were carried out to understand the effect of co-flow on the sound field. The plane jets were of Mach number 0.5 and Reynolds number of 3000 based on center-line velocity excess at the nozzle. This is similar to the DNS by Stanley et al. (2002). It was identified that the co-flow leads to a reduction in turbulence levels. This was also corroborated by the turbulent energy spectrum plots. The far field radiation for the case without co-flow is higher over all angles. The contribution from the low frequencies is directional, mainly towards the downstream direction. The range of dominant convective velocities of the acoustic sources were different along shear layers and center-line.
The plane jet results were also used to bring out a qualitative comparison of flow and the radiation characteristics with round jets. For the round jet, the center-line velocity decays linearly with the stream-wise distance. In the plane jet case, it is the square of the center-line velocity excess which decays linearly with the stream-wise distance. The turbulence levels at any section scales with the center-line stream-wise velocity. The decay of turbulence level is slower for the plane jet and hence the acoustic sources are present for longer distance along the downstream direction.
Subsonic impinging jets are composed of four regions, the jet core, the fully developed jet, the impingement zone and the wall jet. The presence of the second region (fully developed free jet) depends on the distance of the wall from the nozzle and the length of the jet core. In impinging jets, reflection from the wall and the wall jet are additional sources of noise compared to the free jets. The results are analysed for the contribution of the different regions of the flow towards the radiated sound field. LES simulations of impinging round jets and impinging plane jet were carried out for this purpose. In addition, the results have been compared with equivalent free jets. The directivity plots showed that the SPL levels are significantly higher for the impinging jets at all angles. For free jets, a typical time scale for the acoustic sources is the ratio of the nozzle size to the jet velocity. This is ro/Uj for round jets and h/Uj for plane jets. For impinging jets, the non-dimensionlised rms of Lighthill’s source indicates that the time scale for acoustic sources is the ratio of the height of the nozzle from the wall to the jet velocity be L/Uj.
LES of impinging round jets was carried out for two cases with different inflow perturbations. The jets were at Reynolds number of 88000 and Mach number of 0.9, same as the free jet cases. The impingement wall was at a distance L = 24ro from the nozzle exit. For impinging round jets, the SPL levels are found to be higher than the equivalent free jets. From the SPL levels and radiated noise spectra it was shown that the contribution from the large scale structures and its reflection from the wall is directional and at small angles to the wall normal. The difference in the range of angles where the radiation from the large scale structures were observed shows the significance of refraction of sound waves inside the flow. The rms values of the Lighthill’s sources indicate two dominant regions for the sources, just downstream of jet breakdown and in the impingement zone.
The LES of impinging plane jet was done for a jet of Mach number 0.5 and Reynolds number of 6000. The impingement wall was at a distance L = 10h from the nozzle exit. The radiated sound field appears to emanate from this impingement zone. The directivity and the spectrum plots of the far field SPL indicate that there is no preferred direction of radiation from the impingement zone. The Lighthill’s sources are concentrated mainly in the impingement zone. The rms values of the sources indicate that the peak values occur in the impingement zone.
The results from the different flow situations demonstrates the capability of LES with explicit filtering method in predicting the turbulent flow and radiated noise field. The method is robust and has been successfully used for moderate Reynolds number and an Euler simulation. An important feature is that LES can be used to identify acoustic sources and its convective speeds. It has been shown that the Lighthill source calculations, the calculated sound field and the observed radiation patterns agree well. An explanation for these based on the different turbulent flow structures has also been provided.
|
4 |
Simulation des Grandes Echelles de la combustion turbulente à pression supercritique / Large Eddy Simulation of supercritical-pressure turbulent combustionSchmitt, Thomas 19 June 2009 (has links)
Dans les chambres de combustion des moteurs fusées cryotechniques, la pression excède la pression critique des réactifs. Les interactions moléculaires ne sont plus négligeables et le comportement du fluide n’est plus celui d’un gaz parfait. Le but de cette thèse est de développer un outil de Simulation des Grandes Echelles (SGE) pour étudier la combustion et la dynamique dans des géométries réalistes de moteur fusées. L’utilisation de l’équation d’état de Peng-Robinson, associée à une formulation thermodynamique généralisée, et des coefficients de transports appropriés permettent au code de SGE AVBP du CERFACS de simuler des systèmes réactifs à pression supercritique. Les changements thermodynamiques au sein d’AVBP nécessitent également l’adaptation des conditions limites et des schémas numériques. L’outil est validé sur une configuration mono-espèce à pression supercritique, puis sur un cas représentatif d’un injecteur coaxial de moteur-fusée. Les résultats obtenus sont en bon accord avec l’expérience et offrent des perspectives encourageantes pour des études futures, telles que des configurations multi-injecteurs ou l’analyse des instabilités de combustion haute fréquence. / In cryogenic engines combustion chambers, pressure exceeds the propellants critical pressure. Molecular interactions are generally no longer negligible and fluid behavior deviates from that of a perfect gas. The objective of this thesis is to develop a Large-Eddy Simulation (LES) tool to study combustion and dynamics in realistic geometries of rocket engines. The use of the Peng-Robinson equation of state, in conjunction with a generalized treatment of thermodynamics and appropriate transport coefficients, allows the CERFACS’ LES code AVBP to handle reactive systems at supercritical pressure. Change of the thermodynamics in AVBP necessarily leads to an adaptation of boundary conditions treatment and numerical schemes. The tool is validated on a mono-species configuration at supercritical pressure, and a reactive single coaxial injector, representative of a rocket injector. Results are in good agreement with experiments and provide encouraging perspectives for future studies, such as multi-injector configurations and high-frequency combustion instabilities.
|
5 |
A Ventilation Strategy Based on Confluent Jets : An Experimental and Numerical StudyJanbakhsh, Setareh January 2015 (has links)
This study presents air distribution systems that are based on confluent jets; this system can be of interest for the establishment of indoor environments, to fulfill the goals of indoor climate and energy-efficient usage. The main objective of this study is to provide deeper understanding of the flow field development of a supply device that is designed based on wall confluent jets and to investigate the ventilation performance by experimental and numerical methods. In this study, the supply device can be described as an array of round jets on a flat surface attached to a side wall. Multiple round jets that issue from supply device apertures are combined at a certain distance downstream from the device and behave as a united jet or so-called confluent jets. Multiple round jets that are generated from the supply device move downward and are attached to the wall at the primary region, due to the Coanda effect, and then they become wall confluent jets until the floor wall is reached. A wall jet in a secondary region is formed along the floor after the stagnation region. The characteristics of the flow field and the ventilation performance of conventional wall confluent jets and modified wall confluent jets supply devices are investigated experimentally in an office test room. The study of the modified wall confluent jets is intended to improve the efficiency of the conventional one while maintaining acceptable thermal comfort in an office environment. The results show that the modified wall confluent jets supply device can provide acceptable thermal comfort for the occupant with lower airflow rate compared to the conventional wall confluent jets supply device. Numerical predictions using three turbulence models (renormalization group (RNG k– ε), realizable (Re k– ε), and shear stress transport (SST k– ω) are evaluated by measurement results. The computational box and nozzle plate models are used to model the inlet boundary conditions of the nozzle device. In the isothermal study, the wall confluent jets in the primary region and the wall jet in the secondary region, when predicted by the three turbulence models, are in good agreement with the measurements. The non-isothermal validation studies show that the SST k– ω model is slightly better at predicting the wall confluent jets than the other two models. The SST k– ω model is used to investigate the effects of the nozzle diameter, number of nozzles, nozzle array configuration, and inlet discharge height on the ventilation performance of the proposed wall confluent jets supply device. The nozzle diameter and number of nozzles play important roles in determining the airflow pattern, temperature field, and draught distribution. Increased temperature stratification and less draught distribution are achieved by increasing the nozzle diameter and number of nozzles. The supply device with smaller nozzle diameters and fewer nozzles yields rather uniform temperature distribution due to the dominant effect of mixing. The flow behavior is nearly independent of the inlet discharge height for the studied range. The proposed wall confluent jets supply device is compared with a mixing supply device, impinging supply device and displacement supply device. The results show that the proposed wall confluent jets supply device has the combined behavior of both mixing and stratification principles. The proposed wall confluent jets supply device provides better overall ventilation performance than the mixing and displacement supply devices used in this study. This study covers also another application of confluent jets that is based on impinging technology. The supply device under consideration has an array of round jets on a curve. Multiple jets issue from the supply device aperture, in which the supply device is positioned vertically and the jets are directed against a target wall. The flow behavior and ventilation performance of the impinging confluent jets supply device is studied experimentally in an industrial premise. The results show that the impinging confluent jets supply device maintains acceptable thermal comfort in the occupied zone by creating well-distributed airflow during cold and hot seasons.
|
Page generated in 0.0577 seconds