• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-retransmission Route Discovery Schemes for Ad Hoc Wireless Network with a Realistic Physical Layer

Jin, Xiangyang 28 September 2011 (has links)
During the route discovery process, each node receiving the route request packet (RReq) will retransmit it exactly once. A distant neighbor may accidentally receive/loose the only RReq and use it to announce a new route, although that link is inferior/superior for route reply packets (RRep) or actual message routing. Overall, the constructed route may be far from the optimal. All existing route discovery schemes (including DSR/AODV) apply retransmission during route discovery exactly once (1R). Based on a realistic physical layer model, we propose two new route discovery schemes: n-retransmission (nR, retransmitting exactly n times) and n-retransmission c-reception (ncRR), retransmitting until we either reach a total of n own retransmissions or c copies from neighbors are heard. We compare our two new scheme with the traditional one, under otherwise identical conditions (same metric, same packet reception probability on each link) and the same choices about possibly retransmitting again upon discovering a better route (R+) or discarding it (R1), generating route reply packet for every received RRep (B*), or for first and better discovered routes only (B2), and retransmitting RRep exactly once (A1), up to a maximum of three times (A3), or optimally u times decided by link quality (Au). Experimental results show that the proposed ncRR scheme (for n=2 and c=3 or c=4) achieves the best tradeoff between quality of route, success rate and message overhead in the route discovery process, followed by the nR scheme, and both of them are superior to the existing traditional schemes.
2

Multi-retransmission Route Discovery Schemes for Ad Hoc Wireless Network with a Realistic Physical Layer

Jin, Xiangyang 28 September 2011 (has links)
During the route discovery process, each node receiving the route request packet (RReq) will retransmit it exactly once. A distant neighbor may accidentally receive/loose the only RReq and use it to announce a new route, although that link is inferior/superior for route reply packets (RRep) or actual message routing. Overall, the constructed route may be far from the optimal. All existing route discovery schemes (including DSR/AODV) apply retransmission during route discovery exactly once (1R). Based on a realistic physical layer model, we propose two new route discovery schemes: n-retransmission (nR, retransmitting exactly n times) and n-retransmission c-reception (ncRR), retransmitting until we either reach a total of n own retransmissions or c copies from neighbors are heard. We compare our two new scheme with the traditional one, under otherwise identical conditions (same metric, same packet reception probability on each link) and the same choices about possibly retransmitting again upon discovering a better route (R+) or discarding it (R1), generating route reply packet for every received RRep (B*), or for first and better discovered routes only (B2), and retransmitting RRep exactly once (A1), up to a maximum of three times (A3), or optimally u times decided by link quality (Au). Experimental results show that the proposed ncRR scheme (for n=2 and c=3 or c=4) achieves the best tradeoff between quality of route, success rate and message overhead in the route discovery process, followed by the nR scheme, and both of them are superior to the existing traditional schemes.
3

Multi-retransmission Route Discovery Schemes for Ad Hoc Wireless Network with a Realistic Physical Layer

Jin, Xiangyang 28 September 2011 (has links)
During the route discovery process, each node receiving the route request packet (RReq) will retransmit it exactly once. A distant neighbor may accidentally receive/loose the only RReq and use it to announce a new route, although that link is inferior/superior for route reply packets (RRep) or actual message routing. Overall, the constructed route may be far from the optimal. All existing route discovery schemes (including DSR/AODV) apply retransmission during route discovery exactly once (1R). Based on a realistic physical layer model, we propose two new route discovery schemes: n-retransmission (nR, retransmitting exactly n times) and n-retransmission c-reception (ncRR), retransmitting until we either reach a total of n own retransmissions or c copies from neighbors are heard. We compare our two new scheme with the traditional one, under otherwise identical conditions (same metric, same packet reception probability on each link) and the same choices about possibly retransmitting again upon discovering a better route (R+) or discarding it (R1), generating route reply packet for every received RRep (B*), or for first and better discovered routes only (B2), and retransmitting RRep exactly once (A1), up to a maximum of three times (A3), or optimally u times decided by link quality (Au). Experimental results show that the proposed ncRR scheme (for n=2 and c=3 or c=4) achieves the best tradeoff between quality of route, success rate and message overhead in the route discovery process, followed by the nR scheme, and both of them are superior to the existing traditional schemes.
4

Multi-retransmission Route Discovery Schemes for Ad Hoc Wireless Network with a Realistic Physical Layer

Jin, Xiangyang January 2011 (has links)
During the route discovery process, each node receiving the route request packet (RReq) will retransmit it exactly once. A distant neighbor may accidentally receive/loose the only RReq and use it to announce a new route, although that link is inferior/superior for route reply packets (RRep) or actual message routing. Overall, the constructed route may be far from the optimal. All existing route discovery schemes (including DSR/AODV) apply retransmission during route discovery exactly once (1R). Based on a realistic physical layer model, we propose two new route discovery schemes: n-retransmission (nR, retransmitting exactly n times) and n-retransmission c-reception (ncRR), retransmitting until we either reach a total of n own retransmissions or c copies from neighbors are heard. We compare our two new scheme with the traditional one, under otherwise identical conditions (same metric, same packet reception probability on each link) and the same choices about possibly retransmitting again upon discovering a better route (R+) or discarding it (R1), generating route reply packet for every received RRep (B*), or for first and better discovered routes only (B2), and retransmitting RRep exactly once (A1), up to a maximum of three times (A3), or optimally u times decided by link quality (Au). Experimental results show that the proposed ncRR scheme (for n=2 and c=3 or c=4) achieves the best tradeoff between quality of route, success rate and message overhead in the route discovery process, followed by the nR scheme, and both of them are superior to the existing traditional schemes.
5

Bandwidth and energy-efficient route discovery for noisy Mobile Ad-hoc NETworks

Adarbah, Haitham January 2015 (has links)
Broadcasting is used in on-demand routing protocols to discover routes in Mobile Ad-hoc Networks (MANETs). On-demand routing protocols, such as Ad-hoc On-demand Distance Vector (AODV) commonly employ pure flooding based broadcasting to discover new routes. In pure flooding, a route request (RREQ) packet is broadcast by the source node and each receiving node rebroadcasts it. This continues until the RREQ packet arrives at the destination node. Pure flooding generates excessive redundant routing traffic that may lead to the broadcast storm problem (BSP) and deteriorate the performance of MANETs significantly. A number of probabilistic broadcasting schemes have been proposed in the literature to address BSP. However, these schemes do not consider thermal noise and interference which exist in real life MANETs, and therefore, do not perform well in real life MANETs. Real life MANETs are noisy and the communication is not error free. This research argues that a broadcast scheme that considers the effects of thermal noise, co-channel interference, and node density in the neighbourhood simultaneously can reduce the broadcast storm problem and enhance the MANET performance. To achieve this, three investigations have been carried out: First, the effect of carrier sensing ranges on on-demand routing protocol such as AODV and their impact on interference; second, effects of thermal noise on on-demand routing protocols and third, evaluation of pure flooding and probabilistic broadcasting schemes under noisy and noiseless conditions. The findings of these investigations are exploited to propose a Channel Adaptive Probabilistic Broadcast (CAPB) scheme to disseminate RREQ packets efficiently. The proposed CAPB scheme determines the probability of rebroadcasting RREQ packets on the fly according to the current Signal to Interference plus Noise Ratio (SINR) and node density in the neighbourhood. The proposed scheme and two related state of the art (SoA) schemes from the literature are implemented in the standard AODV to replace the pure flooding based broadcast scheme. Ns-2 simulation results show that the proposed CAPB scheme outperforms the other schemes in terms of routing overhead, average end-to-end delay, throughput and energy consumption.

Page generated in 0.1523 seconds