• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 93
  • 93
  • 67
  • 33
  • 30
  • 23
  • 18
  • 18
  • 18
  • 15
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Lifenet: a flexible ad hoc networking solution for transient environments

Mehendale, Hrushikesh Sanjay 18 November 2011 (has links)
In the wake of major disasters, the failure of existing communications infrastructure and the subsequent lack of an effective communication solution results in increased risks, inefficiencies, damage and casualties. Currently available options such as satellite communication are expensive and have limited functionality. A robust communication solution should be affordable, easy to deploy, require little infrastructure, consume little power and facilitate Internet access. Researchers have long proposed the use of ad hoc wireless networks for such scenarios. However such networks have so far failed to create any impact, primarily because they are unable to handle network transience and have usability constraints such as static topologies and dependence on specific platforms. LifeNet is a WiFi-based ad hoc data communication solution designed for use in highly transient environments. After presenting the motivation, design principles and key insights from prior literature, the dissertation introduces a new routing metric called Reachability and a new routing protocol based on it, called Flexible Routing. Roughly speaking, reachability measures the end-to-end multi-path probability that a packet transmitted by a source reaches its final destination. Using experimental results, it is shown that even with high transience, the reachability metric - (1) accurately captures the effects of transience (2) provides a compact and eventually consistent global network view at individual nodes, (3) is easy to calculate and maintain and (4) captures availability. Flexible Routing trades throughput for availability and fault-tolerance and ensures successful packet delivery under varying degrees of transience. With the intent of deploying LifeNet on field we have been continuously interacting with field partners, one of which is Tata Institute of Social Sciences India. We have refined LifeNet iteratively refined base on their feedback. I conclude the thesis with lessons learned from our field trips so far and deployment plans for the near future.
92

Routing protocols for indoor wireless ad-hoc networks: a cross-layer perspective

Dricot, Jean-Michel 01 June 2007 (has links)
The all-over trend for an universal access and ubiquitous access to the Internet is driving a revolution in our societies. In order to support this era of nomadic applications, new flexible network architectures have emerged. They are referred to as “wireless ad-hoc networks.” <p><p>Since human-operated devices will more likely be used indoor, it leads to many issues related to the strength of the fading in this environment. Recently, it has been suggested that a possible interaction might exist between various parameters of the ad-hoc networks and, more precisely, between the propagation model and the routing protocol. <p><p>To address this question, we present in this dissertation a cross-layer perspective of the analysis of these indoor ad-hoc networks. Our reasoning is made of four stages. First, the cross-layer interactions are analyzed by the means of multivariate statistical techniques. Since a cross-layering between the physical layer and the routing protocol has been proven to be significant, we further investigate the possible development a physical layer-constrained routing algorithm. <p><p>Second, fundamental equations governing the wireless telecommunications systems are developed in order to provide insightful informations on how a reliable routing strategy should be implemented in a strongly-faded environment. After that, and in order to allow a better spatial reuse, the routing protocol we propose is further enhanced by the adjonction of a power control algorithm. This last feature is extensively analyzed and a closed-form expression of the link probability of outage in presence of non-homogeneous transmission powers is given. Numerous simulations corroborate the applicability and the performance of the derived protocol. Also, we evaluate the gain, in terms of radio channel ressources, that has been achieved by the means of the power control algorithm. <p><p>Third, an architecture for the interconnection with a cellular network is investigated. A closed-form expression of the relaying stability of a node is given. This equation expresses the minimal requirement that a relaying node from the ad-hoc network must fullfil in order to bridge properly the connections to the base-station. <p><p>Finally, a real-life implementation is provided as a validation of the applicability of this novel ad-hoc routing protocol. It is concluded that, both from the performance and the spatial re-use point-of-views, it can be taken advantage from the cross-layering between the physical and the routing layers to positively enhance the networking architectures deployed in an indoor environment. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
93

Multihoming with ILNP in FreeBSD

Simpson, Bruce January 2016 (has links)
Multihoming allows nodes to be multiply connected to the network. It forms the basis of features which can improve network responsiveness and robustness; e.g. load balancing and fail-over, which can be considered as a choice between network locations. However, IP today assumes that IP addresses specify both network location and node identity. Therefore, these features must be implemented at routers. This dissertation considers an alternative based on the multihoming approach of the Identifier Locator Network Protocol (ILNP). ILNP is one of many proposals for a split between network location and node identity. However, unlike other proposals, ILNP removes the use of IP addresses as they are used today. To date, ILNP has not been implemented within an operating system stack. I produce the first implementation of ILNP in FreeBSD, based on a superset of IPv6 – ILNPv6 – and demonstrate a key feature of ILNP: multihoming as a first class function of the operating system, rather than being implemented as a routing function as it is today. To evaluate the multihoming capability, I demonstrate one important application of multihoming – load distribution – at three levels of network hierarchy including individual hosts, a singleton Site Border Router (SBR), and a novel, dynamically instantiated, distributed SBR (dSBR). For each level, I present empirical results from a hardware testbed; metrics include latency, throughput, loss and reordering. I compare performance with unmodified IPv6 and NPTv6. Finally, I evaluate the feasibility of dSBR-ILNPv6 as an alternative to existing multihoming approaches, based on measurements of the dSBR's responsiveness to changes in site connectivity. We find that multihoming can be implemented by individual hosts and/or SBRs, without requiring additional routing state as is the case today, and without any significant additional load or overhead compared to unicast IPv6.

Page generated in 0.1183 seconds