• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rspondin-1 Deficiency Enhances Beta Cell Neogenesis in a Murine Model of Diabetes

Chahal, Jasleen 11 July 2013 (has links)
The cWnt activator, Rspondin-1 (Rspo1), has been identified as a regulator of β-cell growth and function, although its role in pathophysiological conditions such as streptozotocin (STZ)-induced diabetes is unknown. Hence, I hypothesized that Rspo1 deficiency stimulates β-cell neogenesis in STZ-diabetes. There was no difference in oral glucose handling between STZ-induced Rspo1mice, although, Rspo1-/- mice demonstrated increased insulin sensitivity compared to wild-type littermates. Moreover, β-cell mass and the total number of islets did not differ between STZ-induced Rspo1+/+ and Rspo1-/- mice, although mice with Rspo1 deficiency had reduced β-cell apoptosis and significantly enhanced numbers of insulin-positive ductal cells suggestive of β-cell neogenesis. Furthermore, the increased β-cell regeneration observed in knockout animals appeared to be associated with a more differentiated/mature β-cell phenotype in Rspo1-/- versus Rspo1+/+ mice. Collectively, these findings indicate a role for Rspo1 as a negative regulator of in vivo β-cell neogenesis and survival in the face of STZ-induced diabetes.
2

Rspondin-1 Deficiency Enhances Beta Cell Neogenesis in a Murine Model of Diabetes

Chahal, Jasleen 11 July 2013 (has links)
The cWnt activator, Rspondin-1 (Rspo1), has been identified as a regulator of β-cell growth and function, although its role in pathophysiological conditions such as streptozotocin (STZ)-induced diabetes is unknown. Hence, I hypothesized that Rspo1 deficiency stimulates β-cell neogenesis in STZ-diabetes. There was no difference in oral glucose handling between STZ-induced Rspo1mice, although, Rspo1-/- mice demonstrated increased insulin sensitivity compared to wild-type littermates. Moreover, β-cell mass and the total number of islets did not differ between STZ-induced Rspo1+/+ and Rspo1-/- mice, although mice with Rspo1 deficiency had reduced β-cell apoptosis and significantly enhanced numbers of insulin-positive ductal cells suggestive of β-cell neogenesis. Furthermore, the increased β-cell regeneration observed in knockout animals appeared to be associated with a more differentiated/mature β-cell phenotype in Rspo1-/- versus Rspo1+/+ mice. Collectively, these findings indicate a role for Rspo1 as a negative regulator of in vivo β-cell neogenesis and survival in the face of STZ-induced diabetes.

Page generated in 0.0289 seconds