• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Mapping Of A Soybean Mosaic Virus (SMV) Resistance Gene In Soybean (Glycine Max)

Kristipati, Sesha Sai Venkata 21 July 2004 (has links)
Soybean mosaic virus (SMV) is the major virus disease reported all over the world in soybean crop. This disease causes reduction in the yield and quality of soybean crop. Three independent genes Rsv1, Rsv3, and Rsv4, were found to provide host resistance in soybean. Rsv1 confers resistance to all but most virulant strains of SMV. Rsv1 has been mapped to soybean molecular linkage group (MLG) F by using molecular markers. The purpose of this study is to investigate the location of Rsv3 gene on soybean map using molecular markers. The Rsv3 gene of soybean confers resistance to the most vurulent strains (G5-G7) of SMV. In order to map the gene, an F2 population was constructed from a cross between L29, an Rsv3 isoline of 'Williams', and 'Lee 68', a susceptible cultivar. Rsv3 genotypes of 183 F2 plants were determined by inoculating F2:3 progeny with the G7 strain of SMV. A preliminary survey of two parental lines, near isogenic lines (NILs), and bulk segregants with 136 restriction fragment length polymorphism (RFLP) markers yielded 36 markers showing variation between the two parents. These polymorphic RFLP markers unable to provided any indication of linkage to Rsv3. As an alternative strategy, amplified fragment length polymorphic (AFLP) marker analysis of the two parental lines, NILs and bulk segregants was performed using 64 primer combinations. Initial breakthrough came in the form of AFLP primer combination of Eco+AAC/Mse+CTG exhibited polymorphism between NILs, bulk segregants, and two parental lines. This AFLP marker was isolated and cloned to convert it into a RFLP clone to further investigate the linkage to Rsv3 by F2 segregation analysis. A mapping population constructed by crossing Glycine max x Glycine soja employed in determining the location AFLP-derived RFLP clone on soybean linkage map. This population has densely mapped molecular marker data that enabled determining the location of AFLP-derived RFLP clone ACR1 on soybean molecular linkage group (MLG) B2 between the markers pA516 and pA519. This finding, made it easy to establish the linkage of markers pA519, pA516, and pA593 in L29 x Lee 68 population by F2 segregation analysis. The closest marker linked pA519, was 0.9 cM away from Rsv3. In another study Rsv4 is reported to be mapped to MLG D1b of soybean. Results of this study are useful in marker-based selection (MAS), pyramiding viral resistance genes and in cloning the Rsv3 gene. / Master of Science
2

Comparative Functional Genomics Characterization of Low Phytic Acid Soybeans and Virus Resistant Soybeans

DeMers, Lindsay Carlisle 02 June 2020 (has links)
The field of functional genomics aims to understand the complex relationship between genotype and phenotype by integrating genome-wide approaches, such as transcriptomics, proteomics, and metabolomics. Large-scale "-omics" research has been made widely possible by the advent of high-throughput techniques, such as next-generation sequencing and mass-spectrometry. The vast data generated from such studies provide a wealth of information on the biological dynamics underlying phenotypes. Though functional genomics approaches are used extensively in human disease research, their use also spans organisms as miniscule as mycoplasmas to as great as sperm whales. In particular, functional genomics is instrumental in agricultural advancements for the improvement of productivity and sustainability in crop and livestock production. Improvement in soybean production is especially imperative, as soybeans are a primary source of oil and protein for human and livestock consumption, respectively. The research presented here employs functional genomics approaches – transcriptomics and metabolomics – to discern the transcriptional regulation and metabolic events underlying two economically important agronomic traits in soybean: seed phytic acid content and Soybean mosaic virus resistance. At normal levels, seed phytic acid content inhibits mineral absorption in humans and livestock, acting as an antinutrient and contributing to phosphorus pollution; however, the development of low phytic acid soybeans has helped mitigate these issues, as their seeds increase nutrient bioavailability and reduce environmental impact. Despite these desirable qualities, low phytic acid soybeans exhibit poor seed performance, which negatively affects germination rates and yield and has prevented their large-scale commercial production. Thus, part of the focus of this research was investigating the effects of mutations conferring the low phytic acid phenotype on seed germination. Comparative studies between low and normal phytic acid soybean seeds were carried out and revealed distinct differences in metabolite profiles and in the transcriptional regulation of biological pathways that may be vital for successful seed germination. The final part of this research concerns Rsv3-mediated extreme resistance, a unique mode of resistance that is effective against the most virulent strains of Soybean mosaic virus. The molecular mechanisms governing this type of resistance are poorly characterized. Therefore, the research presented here attempts to elucidate the regulatory elements responsible for the induction of the Rsv3-mediated extreme resistance response. Utilizing a comparative transcriptomic time series approach on Soybean mosaic virus-inoculated Rsv3 (resistant) and rsv3 (susceptible) soybean lines, this final study provides gene candidates putatively functioning in the regulation of biological pathways demonstrated to be crucial for Rsv3-mediated resistance. / Doctor of Philosophy / Soybeans are a crop of great economic importance, being a primary source of oil and protein for human and livestock consumption, respectively. Increasing demand for soybean calls for improvement in its production. An emerging field that has had tremendous impact on this endeavor is the field of functional genomics. Functional genomics approaches generate large-scale biological data that can aid in discerning how specific processes are regulated and controlled in an organism. The research presented in this work utilizes functional genomics approaches to elucidate the biological mechanisms underlying two economically important traits in soybean: seed phytic acid content and Soybean mosaic virus resistance. Phytic acid is a compound found in soybean seeds that causes nutrient deficiencies and phosphorus pollution. Soybeans with reduced to phytic acid content have been developed to mitigate these problems; they have poor seed germination and emergence. The studies in this work employ functional genomics approaches to compare unique sets of low and normal phytic acid soybeans to help establish the relationship between seed phytic acid content and seed performance. These studies resulted in new and promising hypotheses for future studies on investigating the low phytic acid trait. The final focus of this work used a functional genomics approach to discern the molecular mechanisms underlying a unique mode of resistance to Soybean mosaic virus. The study identified genes in soybean that are potentially critical to resistance against Soybean mosaic virus.

Page generated in 0.0703 seconds