• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of amorphous RuO2-Ta2O5/Ti anode for oxygen evolution in electrowinning / 電解採取に用いる酸素発生用非晶質RuO2-Ta2O5/Ti陽極の開発 / デンカイ サイシュ ニ モチイル サンソ ハッセイヨウ ヒショウシツ RuO2-Ta2O5/Ti ヨウキョク ノ カイハツ / デンカイ サイシュ ニ モチイル サンソ ハッセイヨウ ヒショウシツ ニサンカ ルテニウム ゴサンカ ニタンタル ヒフク チタン ヨウキョク ノ カイハツ

張 天, Tian Zhang 26 September 2015 (has links)
The decrease in thermal decomposition temperature led to the amorphization of RuO2, and nano RuO2 particles were uniformly dispersed in amorphous Ta2O5 matrix. Such nano particles induced the increase in effective surface area for oxygen evolution and change in rate determining step, resulting in a significant decrease in oxygen overpotential. This excellent achievement induced a significant decrease in cell voltage of 0.7 V compared to lead alloy anodes and a voltage reduction of 37 % was achieved for copper electrowinning. Another distinct feature of the amorphous anodes is that nano RuO2 particles increase the overpotential of the unwanted side reaction on the anode, so that the anodic deposition of PbO2 can be completely inhibited. Therefore, the amorphous RuO2-Ta2O5/Ti anodes developed in this thesis have a high possibility to improve the purity of electrowon metal, reduce the maintenance of electrolysis process, prolong the lifetime of the anode, and make a low impact to environment. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University

Page generated in 0.0223 seconds