• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Runtime Verification with Controllable Time Predictability and Memory Utilization

Kumar, Deepak 20 September 2013 (has links)
The goal of runtime verifi cation is to inspect the well-being of a system by employing a monitor during its execution. Such monitoring imposes cost in terms of resource utilization. Memory usage and predictability of monitor invocations are the key indicators of the quality of a monitoring solution, especially in the context of embedded systems. In this work, we propose a novel control-theoretic approach for coordinating time predictability and memory utilization in runtime monitoring of real-time embedded systems. In particular, we design a PID controller and four fuzzy controllers with di erent optimization control objectives. Our approach controls the frequency of monitor invocations by incorporating a bounded memory bu er that stores events which need to be monitored. The controllers attempt to improve time predictability, and maximize memory utilization, while ensuring the soundness of the monitor. Unlike existing approaches based on static analysis, our approach is scalable and well-suited for reactive systems that are required to react to stimuli from the environment in a timely fashion. Our experiments using two case studies (a laser beam stabilizer for aircraft tracking, and a Bluetooth mobile payment system) demonstrate the advantages of using controllers to achieve low variation in the frequency of monitor invocations, while maintaining maximum memory utilization in highly non-linear environments. In addition to this problem, the thesis presents a brief overview of our preceding work on runtime verifi cation.
2

Runtime Verification with Controllable Time Predictability and Memory Utilization

Kumar, Deepak 20 September 2013 (has links)
The goal of runtime verifi cation is to inspect the well-being of a system by employing a monitor during its execution. Such monitoring imposes cost in terms of resource utilization. Memory usage and predictability of monitor invocations are the key indicators of the quality of a monitoring solution, especially in the context of embedded systems. In this work, we propose a novel control-theoretic approach for coordinating time predictability and memory utilization in runtime monitoring of real-time embedded systems. In particular, we design a PID controller and four fuzzy controllers with di erent optimization control objectives. Our approach controls the frequency of monitor invocations by incorporating a bounded memory bu er that stores events which need to be monitored. The controllers attempt to improve time predictability, and maximize memory utilization, while ensuring the soundness of the monitor. Unlike existing approaches based on static analysis, our approach is scalable and well-suited for reactive systems that are required to react to stimuli from the environment in a timely fashion. Our experiments using two case studies (a laser beam stabilizer for aircraft tracking, and a Bluetooth mobile payment system) demonstrate the advantages of using controllers to achieve low variation in the frequency of monitor invocations, while maintaining maximum memory utilization in highly non-linear environments. In addition to this problem, the thesis presents a brief overview of our preceding work on runtime verifi cation.
3

Time-triggered Runtime Verification of Real-time Embedded Systems

Navabpour, Samaneh January 2014 (has links)
In safety-critical real-time embedded systems, correctness is of primary concern, as even small transient errors may lead to catastrophic consequences. Due to the limitations of well-established methods such as verification and testing, recently runtime verification has emerged as a complementary approach, where a monitor inspects the system to evaluate the specifications at run time. The goal of runtime verification is to monitor the behavior of a system to check its conformance to a set of desirable logical properties. The literature of runtime verification mostly focuses on event-triggered solutions, where a monitor is invoked when a significant event occurs (e.g., change in the value of some variable used by the properties). At invocation, the monitor evaluates the set of properties of the system that are affected by the occurrence of the event. This type of monitor invocation has two main runtime characteristics: (1) jittery runtime overhead, and (2) unpredictable monitor invocations. These characteristics result in transient overload situations and over-provisioning of resources in real-time embedded systems and hence, may result in catastrophic outcomes in safety-critical systems. To circumvent the aforementioned defects in runtime verification, this dissertation introduces a novel time-triggered monitoring approach, where the monitor takes samples from the system with a constant frequency, in order to analyze the system's health. We describe the formal semantics of time-triggered monitoring and discuss how to optimize the sampling period using minimum auxiliary memory and path prediction techniques. Experiments on real-time embedded systems show that our approach introduces bounded overhead, predictable monitoring, less over-provisioning, and effectively reduces the involvement of the monitor at run time by using negligible auxiliary memory. We further advance our time-triggered monitor to component-based multi-core embedded systems by establishing an optimization technique that provides the invocation frequency of the monitors and the mapping of components to cores to minimize monitoring overhead. Lastly, we present RiTHM, a fully automated and open source tool which provides time-triggered runtime verification specifically for real-time embedded systems developed in C.
4

Runtime detection and prevention for Structure Query Language injection attacks

Shafie, Emad January 2013 (has links)
The use of Internet services and web applications has grown rapidly because of user demand. At the same time, the number of web application vulnerabilities has increased as a result of mistakes in the development where some developers gave the security aspect a lower priority than aspects like application usability. An SQL (structure query language) injection is a common vulnerability in web applications as it allows the hacker or illegal user to have access to the web application's database and therefore damage the data, or change the information held in the database. This thesis proposes a new framework for the detection and prevention of new and common types of SQL injection attacks. The programme of research is divided in several work packages that start from addressing the problem of the web application in general and SQL injection in particular and discuss existing approaches. The other work packages follow a constructive research approach. The framework considers existing and new SQL injection attacks. The framework consists of three checking components; the first component will check the user input for existing attacks, the second component will check for new types of attacks, and the last component will block unexpected responses from the database engine. Additionally, our framework will keep track of an ongoing attack by recording and investigating user behaviour. The framework is based on the Anatempura tool, a runtime verification tool for Interval Temporal Logic properties. Existing attacks and good/bad user behaviours are specified using Interval Temporal Logic, and the detection of new SQL injection attacks is done using the database observer component. Moreover, this thesis discusses a case study where various types of user behaviour are specified in Interval Temporal Logic and show how these can be detected. The implementation of each component has been provided and explained in detail showing the input, the output and the process of each component. Finally, the functionality of each checking component is evaluated using a case study. The user behaviour component is evaluated using sample attacks and normal user inputs. This thesis is summarized at the conclusion chapter, the future work and the limitations will be discussed. This research has made the following contributions: • New framework for detection and prevention of SQL injection attacks. • Runtime detection: use runtime verification technique based on Interval Temporal logic to detect various types of SQL injection attacks. • Database observer: to detect possible new injection attacks by monitoring database transactions. • User's behaviour: investigates related SQL injection attacks using user input, and providing early warning against SQL injection attacks.
5

Robust Consistency Checking for Modern Filesystems

Sun, Kuei 19 March 2013 (has links)
A runtime file system checker protects file-system metadata integrity. It checks the consistency of file system update operations before they are committed to disk, thus preventing corrupted updates from reaching the disk. In this thesis, we describe our experiences with building Brunch, a runtime checker for an emerging Linux file system called Btrfs. Btrfs supports many modern file-system features that pose challenges in designing a robust checker. We find that the runtime consistency checks need to be expressed clearly so that they can be reasoned about and implemented reliably, and thus we propose writing the checks declaratively. This approach reduces the complexity of the checks, ensures their independence, and helps identify the correct abstractions in the checker. It also shows how the checker can be designed to handle arbitrary file system corruption. Our results show that runtime consistency checking is still viable for complex, modern file systems.
6

Robust Consistency Checking for Modern Filesystems

Sun, Kuei 19 March 2013 (has links)
A runtime file system checker protects file-system metadata integrity. It checks the consistency of file system update operations before they are committed to disk, thus preventing corrupted updates from reaching the disk. In this thesis, we describe our experiences with building Brunch, a runtime checker for an emerging Linux file system called Btrfs. Btrfs supports many modern file-system features that pose challenges in designing a robust checker. We find that the runtime consistency checks need to be expressed clearly so that they can be reasoned about and implemented reliably, and thus we propose writing the checks declaratively. This approach reduces the complexity of the checks, ensures their independence, and helps identify the correct abstractions in the checker. It also shows how the checker can be designed to handle arbitrary file system corruption. Our results show that runtime consistency checking is still viable for complex, modern file systems.
7

Methods for Reducing Monitoring Overhead in Runtime Verification

Wu, Chun Wah Wallace January 2013 (has links)
Runtime verification is a lightweight technique that serves to complement existing approaches, such as formal methods and testing, to ensure system correctness. In runtime verification, monitors are synthesized to check a system at run time against a set of properties the system is expected to satisfy. Runtime verification may be used to determine software faults before and after system deployment. The monitor(s) can be synthesized to notify, steer and/or perform system recovery from detected software faults at run time. The research and proposed methods presented in this thesis aim to reduce the monitoring overhead of runtime verification in terms of memory and execution time by leveraging time-triggered techniques for monitoring system events. Traditionally, runtime verification frameworks employ event-triggered monitors, where the invocation of the monitor occurs after every system event. Because systems events can be sporadic or bursty in nature, event-triggered monitoring behaviour is difficult to predict. Time-triggered monitors, on the other hand, periodically preempt and process system events, making monitoring behaviour predictable. However, software system state reconstruction is not guaranteed (i.e., missed state changes/events between samples). The first part of this thesis analyzes three heuristics that efficiently solve the NP-complete problem of minimizing the amount of memory required to store system state changes to guarantee accurate state reconstruction. The experimental results demonstrate that adopting near-optimal algorithms do not greatly change the memory consumption and execution time of monitored programs; hence, NP-completeness is likely not an obstacle for time-triggered runtime verification. The second part of this thesis introduces a novel runtime verification technique called hybrid runtime verification. Hybrid runtime verification enables the monitor to toggle between event- and time-triggered modes of operation. The aim of this approach is to reduce the overall runtime monitoring overhead with respect to execution time. Minimizing the execution time overhead by employing hybrid runtime verification is not in NP. An integer linear programming heuristic is formulated to determine near-optimal hybrid monitoring schemes. Experimental results show that the heuristic typically selects monitoring schemes that are equal to or better than naively selecting exclusively one operation mode for monitoring.
8

Methods for Reducing Monitoring Overhead in Runtime Verification

Wu, Chun Wah Wallace January 2013 (has links)
Runtime verification is a lightweight technique that serves to complement existing approaches, such as formal methods and testing, to ensure system correctness. In runtime verification, monitors are synthesized to check a system at run time against a set of properties the system is expected to satisfy. Runtime verification may be used to determine software faults before and after system deployment. The monitor(s) can be synthesized to notify, steer and/or perform system recovery from detected software faults at run time. The research and proposed methods presented in this thesis aim to reduce the monitoring overhead of runtime verification in terms of memory and execution time by leveraging time-triggered techniques for monitoring system events. Traditionally, runtime verification frameworks employ event-triggered monitors, where the invocation of the monitor occurs after every system event. Because systems events can be sporadic or bursty in nature, event-triggered monitoring behaviour is difficult to predict. Time-triggered monitors, on the other hand, periodically preempt and process system events, making monitoring behaviour predictable. However, software system state reconstruction is not guaranteed (i.e., missed state changes/events between samples). The first part of this thesis analyzes three heuristics that efficiently solve the NP-complete problem of minimizing the amount of memory required to store system state changes to guarantee accurate state reconstruction. The experimental results demonstrate that adopting near-optimal algorithms do not greatly change the memory consumption and execution time of monitored programs; hence, NP-completeness is likely not an obstacle for time-triggered runtime verification. The second part of this thesis introduces a novel runtime verification technique called hybrid runtime verification. Hybrid runtime verification enables the monitor to toggle between event- and time-triggered modes of operation. The aim of this approach is to reduce the overall runtime monitoring overhead with respect to execution time. Minimizing the execution time overhead by employing hybrid runtime verification is not in NP. An integer linear programming heuristic is formulated to determine near-optimal hybrid monitoring schemes. Experimental results show that the heuristic typically selects monitoring schemes that are equal to or better than naively selecting exclusively one operation mode for monitoring.
9

Automata based monitoring and mining of execution traces

Reger, Giles Matthew January 2014 (has links)
This thesis contributes work to the fields of runtime monitoring and specification mining. It develops a formalism for specifying patterns of behaviour in execution traces and defines techniques for checking these patterns in, and extracting patterns from, traces. These techniques represent an extension in the expressiveness of properties that can be efficiently and effectively monitored and mined. The behaviour of a computer system is considered in terms of the actions it performs, captured in execution traces. Patterns of behaviour, formally defined in trace specifications, denote the traces that the system should (or should not) exhibit. The main task this work considers is that of checking that the system conforms to the specification i.e. is correct. Additionally, trace specifications can be used to document behaviour to aid maintenance and development. However, formal specifications are often missing or incomplete, hence the mining activity. Previous work in the field of runtime monitoring (checking execution traces) has tended to either focus on efficiency or expressiveness, with different approaches making different trade-offs. This work considers both, achieving the expressiveness of the most expressive existing tools whilst remaining competitive with the most efficient. These elements of expressiveness and efficiency depend on the specification formalism used. Therefore, we introduce quantified event automata for describing patterns of behaviour in execution traces and then develop a range of efficient monitoring algorithms. To monitor execution traces we need a formal description of expected behaviour. However, these are often difficult to write - especially as there is often a lack of understanding of actual behaviour. The field of specification mining aims to explain the behaviour present in execution traces by extracting specifications that conform to those traces. Previous work in this area has primarily been limited to simple specifications that do not consider data. By leveraging the quantified event automata formalism, and its efficient trace checking procedures, we introduce a generate-and-check style mining framework capable of accurately extracting complex specifications. This thesis, therefore, makes separate significant contributions to the fields of runtime monitoring and specification mining. This work generalises and extends existing techniques in runtime monitoring, enabling future research to better understand the interaction between expressiveness and efficiency. This work combines and extends previous approaches to specification mining, increasing the expressiveness of specifications that can be mined.
10

Decentralized Crash-Resilient Runtime Verification

Kazemlou, Shokoufeh January 2017 (has links)
This is the final revision of my M.Sc. Thesis. / Runtime Verification is a technique to extract information from a running system in order to detect executions violating a given correctness specification. In this thesis, we study distributed synchronous/asynchronous runtime verification of systems. In our setting, there is a set of distributed monitors that have only partial views of a large system and are subject to failures. In this context, it is unavoidable that monitors may have different views of the underlying system, and therefore may have different valuations of the correctness property. In this thesis, we propose an automata-based synchronous monitoring algorithm that copes with f crash failures in a distrbuted setting. The algorithm solves the synchronous monitoring problem in f + 1 rounds of communication, and significantly reduces the message size overhead. We also propose an algorithm for distributed crash-resilient asynchronous monitoring that consistently monitors the system under inspection without any communication between monitors. Each local monitor emits a verdict set solely based on its own partial observation, and the intersection of the verdict sets will be the same as the verdict computed by a centralized monitor that has full view of the system. / Thesis / Master of Science (MSc)

Page generated in 0.1132 seconds