• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The ride comfort versus handling decision for off-road vehicles

Bester, Rudolf 25 October 2007 (has links)
Today, Sport Utility Vehicles are marketed as both on-road and off-road vehicles. This results in a compromise when designing the suspension of the vehicle. If the suspension characteristics are fixed, the vehicle cannot have good handling capabilities on highways and good ride comfort over rough terrain. The rollover propensity of this type of vehicle compared to normal cars is high because it has a combination of a high centre of gravity and a softer suspension. The 4 State Semi-active Suspension System (4S4) that can switch between two discrete spring characteristics as well as two discrete damper characteristics, has been proven to overcome this compromise. The soft suspension setting (soft spring and low damping) is used for ride comfort, while the hard suspension setting (stiff spring and high damping) is used for handling. The following question arises: when is which setting most appropriate? The two main contributing factors are the terrain profile and the driver’s actions. Ride comfort is primarily dependant on the terrain that the vehicle is travelling over. If the terrain can be identified, certain driving styles can be expected for that specific environment. The terrains range from rough and uncomfortable to smooth with high speed manoeuvring. Terrain classification methods are proposed and tested with measured data from the test vehicle on known terrain types. Good results were obtained from the terrain classification methods. Five terrain types were accurately identified from over an hour’s worth of vehicle testing. Handling manoeuvres happen unexpectedly, often to avoid an accident. To improve the handling and therefore safety of the vehicle, the 4S4 can be switched to the hard suspension setting, which results in a reduced body roll angle. This decision should be made quickly with the occupants’ safety as the priority. Methods were investigated that will determine when to switch the suspension to the handling mode based on the kinematics of the vehicle. The switching strategies proposed in this study have the potential, with a little refinement, to make the ride versus handling decision correctly. Copyright 2007, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bester, R 2007, The ride comfort versus handling decision for off-road vehicles, MEng dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-10252007-111611 / > / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.1409 seconds