• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia

Elsenbeer, Helmut, Lack, Andreas, Cassel, Keith January 1995 (has links)
A forested first-order catchment in western Amazonia was monitored for 2 years to determine the chemical fingerprints of precipitation, throughfall, overland flow, pipe flow, soil water, groundwater, and streamflow. We used five tracers (hydrogen, calcium, magnesium, potassium, and silica) to distinguish “fast” flow paths mainly influenced by the biological subsystem from “slow” flow paths in the geochemical subsystem. The former comprise throughfall, overland flow, and pipe flow and are characterized by a high potassium/silica ratio; the latter are represented by soil water and groundwater, which have a low potassium/silica ratio. Soil water and groundwater differ with respect to calcium and magnesium. The groundwater-controlled streamflow chemistry is strongly modified by contributions from fast flow paths during precipitation events. The high potassium/silica ratio of these flow paths suggests that the storm flow response at La Cuenca is dominated by event water.
2

738 years of global climate model simulated streamflow in the Nelson-Churchill River Basin

Vieira, Michael John Fernandes 02 February 2016 (has links)
Uncertainty surrounds the understanding of natural variability in hydrologic extremes such as droughts and floods and how these events are projected to change in the future. This thesis leverages Global Climate Model (GCM) data to analyse 738 year streamflow scenarios in the Nelson-Churchill River Basin. Streamflow scenarios include a 500 year stationary period and future projections forced by two forcing scenarios. Fifty three GCM simulations are evaluated for performance in reproducing observed runoff characteristics. Runoff from a subset of nine simulations is routed to generate naturalized streamflow scenarios. Quantile mapping is then applied to reduce volume bias while maintaining the GCM’s sequencing of events. Results show evidence of future increases in mean annual streamflow and evidence that mean monthly streamflow variability has decreased from stationary conditions and is projected to decrease further into the future. There is less evidence of systematic change in droughts and floods. / May 2016

Page generated in 0.165 seconds