• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ideais de anéis de operadores diferenciais / Ideals of rings of differential operators

Tuesta, Napoleon Caro 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements
2

Ideais de anéis de operadores diferenciais / Ideals of rings of differential operators

Napoleon Caro Tuesta 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements

Page generated in 0.086 seconds