• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tracing the source of colourless carbon in an arctic lake on SW Greenland : Insights of organic matter origin from hydrogen isotope analyses of samples prepared using steam equilibration

Holmgren, Bror January 2016 (has links)
Lakes play an important role in the global carbon (C) cycle as they process carbon from terrestrial (allochthonous) and within lake (autochthonous) sources and may store C over long periods of time. Some arctic lakes contain high concentrations of dissolved organic carbon (DOC) that does not absorb light and thus remains colourless. The origin of this DOC remains unknown, but the sediment of these lakes have been suggested to accumulate primarily autochthonous (algal) C. I developed an experimental chamber for hydrogen (H) isotope pre-treatments and applied a novel H isotope tracing approach to determine the origin of the DOC and sediment C of a lake on SW Greenland known to contain colourless DOC. I hypothesized that autochthonous C was the prime source of DOC and sediment C, in line with previous theories. Analyses of algae and soil samples from the catchment revealed that local allochthonous and autochthonous C sources had a δ2H composition of -139 ‰ and -209 ‰, respectively. In contrast to my hypothesis, the analysed DOC had a mean δ2H isotopic composition of -147 ‰ indicating a dominance (ca 80-90 %) of allochthonous C. Similarly, the sediment had a mean δ2H isotopic composition of -155 ‰, suggesting that about 84 % of the C accumulating in the sediment was derived from terrestrial sources. The terrestrial origin was supported by field observations of high DOC seepage water (up to 70 mg L-1) with uncharacteristically low light absorption values entering the lake during high precipitation events. My results indicate that terrestrial processes are fundamental C sources for arctic lakes, even in regions with very low precipitation.
2

Lake water chemistry and the changing arctic environment : Topographic or climatic control?

Gydemo Östbom, Viktor January 2019 (has links)
The arctic is expected to be one of the regions most affected by ongoing climate change, with relative changes in air temperatures significantly higher than the global mean. Lakes are recognized for their potential role in the global climate system and as ecosystems of importance for local societies. As such, there is a scientific interest regarding how arctic lakes and their geochemistry will respond to climatic changes. Lakes around Kangerlussuaq (66.99 N, 51.07 W), south-west Greenland, are known for their unique geochemical composition, including oligosaline lakes, of which some are enriched in colourless dissolved organic carbon (DOC). The origin of this DOC and the importance of local catchment properties for the general water chemistry is currently being debated. This thesis aimed at: i) exploring the extent and effect of catchment morphology on lake-water chemistry in the Kangerlussuaq area; ii) determine the predominant origin of DOC, aquatic or terrestrial. I used a remote-sensing approach based on satellite imagery and digital elevation model (DEM) in deciding landscape influence on water chemistry (pH, alkalinity, conductivity, base cations, sulphate, nitrogen and absorbance). To trace the origin of the organic sources behind DOC lake water and sediments, I used a hydrogen isotope tracing method. The remote sensing approach revealed that morphological characteristics serving as proxies for lake water residence time and hydrologic connectivity (e.g. lake altitude difference and absence of outlets) explained up to 77% of the variations in lake water chemistry. The hydrogen isotopic signature of the DOC indicated a predominantly autochthonous origin, i.e. 59 to 78% was estimated to originate from algae. I conclude that lake water chemistry of the lakes in the study area is primarily controlled by the precipitation : evaporation balance, enhanced by static catchment characteristics regulating water age. Thus, the examined lake water chemical properties are likely to remain across future climatic scenarios, providing the current precipitation : evaporation balance prevails.

Page generated in 0.0368 seconds