• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 53
  • 53
  • 19
  • 16
  • 16
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of Cdc7 and cyclin-dependent kinases in DNA replication and S phase

Poh, Wei Theng January 2012 (has links)
The cell cycle is a highly orchestrated developmental process that eventually leads to the reproduction of a cell. In metazoans, it is driven by the successive activation of cyclin-dependent kinases (Cdk) and proper coordination of cell cycle transitions and processes ensure genomic stability. DNA replication takes place during S phase to faithfully duplicate a cell’s genetic material. In eukaryotes, S phase onset involves the initiation of numerous licensed replication origins across the genome and requires the activities of two protein kinases, S phase-Cdk and Cdc7. In this thesis, I present work relating to the role of the S phase-promoting kinases in DNA replication and S phase regulation. Using the cell-free system of Xenopus egg extracts, a small molecule inhibitor of Cdc7, PHA-767491, was characterised. PHA-767491 was then used to demonstrate that Cdc7 executes its activity early in S phase before the Cdk-dependent step. Cdc7 is not rate limiting for the progression of the replication timing programme once its essential function has been executed, unlike S-Cdk whose activity is required throughout S phase. Protein Phosphatase 1 (PP1) was identified as a modulator of Cdc7 activity in egg extracts, which rapidly reverses Cdc7-dependent phosphorylation of chromatin-bound Mcm4 and likely functionally lowers Cdc7 activity during an etoposide-induced checkpoint response. This provides a novel mechanism for regulating Cdc7 by counteracting its activity on essential replication substrates in the event of replicative stress. In the second part of the thesis, the design strategy for generating a Cdc7-conditional knockout mouse (cko) is outlined and results from the screen for a transgenic founder are presented. A Cdc7-cko mouse will be a valuable tool to further dissect Cdc7 function and regulation in mammalian cells. In the final section, S phase entry and progression in mouse embryonic fibroblasts lacking both Cdk1 and Cdk2 was examined. Contrary to expectations, Cdk1/Cdk2 double knockout cells can enter S phase in the absence of detectable S phase-Cdk activity. S phase progression, however, was inefficient. Cdc6 and cyclin E1 proteins were found to accumulate in high levels in these cells. The exact function(s) and mechanism(s) for these observations remain to be discovered. With this work, I hope to provide additional insight into the roles and regulation of S phase kinases in eukaryotic DNA replication.
2

Die Rolle des Tumorsuppressors p53 in der ungestörten S-Phase / The role of the tumor suppressor p53 in unperturbed S-phase

Müller, Leonie Maria 12 January 2021 (has links)
No description available.
3

Characterization of the association of Dbf4 and Cdc7 with Mcm2-7 and chromatin in Saccharomyces cerevisiae.

Ramer, Matthew January 2011 (has links)
Initiation of DNA replication requires the action of the Dbf4/Cdc7 kinase complex (DDK) which is also a phosphorylation target of Rad53 kinase in the S-phase checkpoint. DDK is thought to trigger DNA replication by phosphorylating members of the Mcm2-7 complex present at origins of replication. While DDK phosphorylation sites have been identified on Mcm2-7, the contributions made by Dbf4 and Cdc7 to the targeting of the complex have not been established. DDK has also been implicated in the S-phase checkpoint response since it is removed from chromatin in a Rad53-dependent manner. The interaction of Dbf4 and Cdc7 with each of the Mcm2-7 subunits was assessed and showed an interaction between Dbf4 and Mcm2 and Mcm6, while interactions between Cdc7 and Mcm4 and Mcm5 were observed. Mutations in Mcm2 and Mcm4 that disrupt the interactions with Dbf4 or Cdc7 showed modest growth impairment and compromised DNA replication, while simultaneous abrogation of both interactions resulted in lethality. Strains overexpressing Mcm2 or Mcm4 were sensitive to genotoxic agents, while overexpression of Mcm2 in a Mcm4Δ175-333 strain background resulted in a severe growth impairment as well as sensitivity to genotoxic stress. ChIP analysis revealed the possibility of Dbf4/Cdc7 localization to origin flanking regions through most of S-phase, which may redistribute to origins at the time of firing. Fluorescence microscopy of Mcm2 and Dbf4 in S-phase seem to show a punctate pattern of staining, consistent with these factors’ localization to ‘replication factories.’ By using a Dbf4ΔN mutant, the N-motif was shown to be required for the Rad53-mediated removal of Dbf4 from chromatin under checkpoint conditions. Initial optimization of a DNA combing protocol was also performed, which along with Dbf4ΔN mutant and the fluorescently-epitope tagged strains, will be useful tools for evaluating a role for DDK in the S-phase checkpoint response. Altered levels of DNA replication factors have been implicated in many human cancers. The data presented in this study provide novel insight into the normal process of the initiation of DNA replication which can be applied to research involving higher eukaryotes, including humans, and can serve as a benchmark for comparison with the cancer phenotype.
4

Replication dynamics in Saccharomyces cerevisiae in the absence of an essential kinase /

Hunt, Sonia Yvette, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 169-183).
5

dNTPs :  the alphabet of life

Kumar, Dinesh January 2010 (has links)
From microscopic bacteria to the giant whale, every single living organism on Earth uses the same language of life: DNA. Deoxyribonucleoside triphosphates––dNTPs (dATP, dTTP, dGTP, and dCTP)––are the building blocks of DNA and are therefore the “alphabet of life”. A balanced supply of dNTPs is essential for integral DNA transactions such as faithful genome duplication and repair. The enzyme ribonucleotide reductase (RNR) not only synthesizes all four dNTPs but also primarily maintains the crucial individual concentration of each dNTP in a cell. In this thesis we investigated what happens if the crucial balanced supply of dNTPs is disrupted, addressing whether a cell has a mechanism to detect imbalanced dNTP pools and whether all pool imbalances are equally mutagenic. To address these questions, we introduced single amino acid substitutions into loop 2 of the allosteric specificity site of Saccharomyces cerevisiae RNR and obtained a collection of yeast strains with different but defined dNTP pool imbalances. These results directly confirmed that the loop 2 is the structural link between the substrate specificity and effector binding sites of RNR. We were surprised to observe that mutagenesis was enhanced even in a strain with mildly imbalanced dNTP pools, despite the availability of the two major replication error correction mechanisms: proofreading and mismatch repair. However, the mutagenic potential of different dNTP pool imbalances did not directly correlate with their severity, and the locations of the mutations in a strain with elevated dTTP and dCTP were completely different from those in a strain with elevated dATP and dGTP. We then investigated, whether dNTP pool imbalances interfere with cell cycle progression and if they are detected by the S-phase checkpoint, a genome surveillance mechanism activated in response to DNA damage or replication blocks. The S-phase checkpoint was activated by the depletion of one or more dNTPs. In contrast, when none of the dNTP pools was limiting for DNA replication, even extreme and mutagenic dNTP pool imbalances did not activate the S-phase checkpoint and did not interfere with the cell cycle progression. We also observed an interesting mutational strand bias in one of the mutant rnr1 strains suggesting that the S-phase checkpoint may selectively prevent formation of replication errors during leading strand replication. We further used these strains to study the mechanisms by which dNTP pool imbalances induce genome instability. In addition, we discovered that a high dNTP concentration allows replicative DNA polymerases to bypass certain DNA lesions, which are difficult to bypass at normal dNTP concentrations. Our results broaden the role of dNTPs beyond ‘dNTPs as the building blocks’ and suggest that dNTPs are not only the building blocks of DNA but also that their concentrations in a cell have regulatory implications for maintaining genomic integrity. This is important as all cancers arise as a result of some kind of genomic abnormality.
6

Characterization of the association of Dbf4 and Cdc7 with Mcm2-7 and chromatin in Saccharomyces cerevisiae.

Ramer, Matthew January 2011 (has links)
Initiation of DNA replication requires the action of the Dbf4/Cdc7 kinase complex (DDK) which is also a phosphorylation target of Rad53 kinase in the S-phase checkpoint. DDK is thought to trigger DNA replication by phosphorylating members of the Mcm2-7 complex present at origins of replication. While DDK phosphorylation sites have been identified on Mcm2-7, the contributions made by Dbf4 and Cdc7 to the targeting of the complex have not been established. DDK has also been implicated in the S-phase checkpoint response since it is removed from chromatin in a Rad53-dependent manner. The interaction of Dbf4 and Cdc7 with each of the Mcm2-7 subunits was assessed and showed an interaction between Dbf4 and Mcm2 and Mcm6, while interactions between Cdc7 and Mcm4 and Mcm5 were observed. Mutations in Mcm2 and Mcm4 that disrupt the interactions with Dbf4 or Cdc7 showed modest growth impairment and compromised DNA replication, while simultaneous abrogation of both interactions resulted in lethality. Strains overexpressing Mcm2 or Mcm4 were sensitive to genotoxic agents, while overexpression of Mcm2 in a Mcm4Δ175-333 strain background resulted in a severe growth impairment as well as sensitivity to genotoxic stress. ChIP analysis revealed the possibility of Dbf4/Cdc7 localization to origin flanking regions through most of S-phase, which may redistribute to origins at the time of firing. Fluorescence microscopy of Mcm2 and Dbf4 in S-phase seem to show a punctate pattern of staining, consistent with these factors’ localization to ‘replication factories.’ By using a Dbf4ΔN mutant, the N-motif was shown to be required for the Rad53-mediated removal of Dbf4 from chromatin under checkpoint conditions. Initial optimization of a DNA combing protocol was also performed, which along with Dbf4ΔN mutant and the fluorescently-epitope tagged strains, will be useful tools for evaluating a role for DDK in the S-phase checkpoint response. Altered levels of DNA replication factors have been implicated in many human cancers. The data presented in this study provide novel insight into the normal process of the initiation of DNA replication which can be applied to research involving higher eukaryotes, including humans, and can serve as a benchmark for comparison with the cancer phenotype.
7

The role of MBD3 and the cell cycle in the regulation of the epigenome

Brown, Shelley E. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Pharmacology and Therapeutics. Title from title page of PDF (viewed 2008/07/23). Includes bibliographical references.
8

Regulation of the G1 to S-phase transition in S. cerevisiae by CDC4 /

Jensen, Bryan, January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [67]-73).
9

Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells

van Rijt, S.H., Romero-Canelón, I., Fu, Y., Shnyder, Steven, Sadler, P.J. 06 March 2014 (has links)
Yes / The problems of acquired resistance associated with platinum drugs may be addressed by chemotherapeutics based on other transition metals as they offer the possibility of novel mechanisms of action. In this study, the cellular uptake and induction of apoptosis in A549 human non-small cell lung cancer cells of three promising osmium(II) arene complexes containing azopyridine ligands,[Os(Z6-arene)( p-R-phenylazopyridine)X]PF6, where arene is p-cymene or biphenyl, R is OH or NMe2, and X is Cl or I, were investigated. These complexes showed time-dependent (4–48 h) potent anticancer activity with highest potency after 24 h (IC50 values ranging from 0.1 to 3.6 mM). Cellular uptake of the three compounds as quantified by ICP-MS, was independent of their log P values (hydrophobicity). Furthermore, maximum cell uptake was observed after 24 h, with evident cell efflux of the osmium after 48 and 72 h of exposure, which correlated with the corresponding IC50 values. The most active compound 2, [Os(Z6-p-cymene)(NMe2-phenylazopyridine)I]PF6, was taken up by lung cancer cells pre-dominately in a temperature-dependent manner indicating that energy-dependent mechanisms are important in the uptake of 2. Cell fractionation studies showed that all three compounds accumulated mainly in cellular membranes. Furthermore, compound 2 induced apoptosis and caused accumulation in the S-phase of the cell cycle. In addition, 2 induced cytochrome c release and alterations in mito-chondrial membrane potential even after short exposure times, indicating that mitochondrial apoptotic pathways are involved. This study represents the first steps towards understanding the mode of action of this promising class of new osmium-based chemotherapeutics.
10

Structural and transport property changes in austenitic stainless steel induced by nitrogen incorporation

Martinavičius, Andrius 16 June 2011 (has links) (PDF)
The saturation of the near surface layers of metals with different elements is a powerful tool to change their surface properties. In this work, structure and transport changes induced by incorporation of large amounts of nitrogen at moderate temperatures (∼370−430°C) in austenitic stainless steel are investigated. The structural study of the plasma nitrided ASS has been carried out using a combination of global (X-ray diffraction, nuclear reaction analysis) and local probe techniques (Mossbauer, X-ray absorption near edge structure, extended X-ray absorption fine structure spectroscopies). It reveals that nitriding at moderate temperatures (∼400°C) results in the nitrided layer with Fe, Cr and Ni being in different local chemical environments: Cr in the CrN-like state, Fe in the Fe4N-like state, Ni in the metallic state. The results demonstrate that the incorporation of interstitial nitrogen destabilizes homogeneous distribution of the ASS constituents, which leads to the segregation of the elements into small zones rich in Cr and Ni and provide strong evidence that the decomposition is of a spinodal nature. These experimental findings contradict the widely accepted view that the phase formed during nitriding at moderate temperatures is a homogeneous supersaturated nitrogen solid solution. The nitrogen atomic transport study has been carried out by using ion beam nitriding of single-crystalline stainless steel, and the issues of the influence of the crystalline orientation, nitriding temperature, ion flux and ion energy are addressed. The diffusion coefficients have been extracted from the fitting of the nitrogen depth profiles by using the trapping-detrapping model. It is shown that the crystalline orientation plays a significant role in nitrogen diffusion: the penetration depth is largest, intermediate and lowest for the (001), (110) and (111) orientation, respectively. The pre-exponential factor D0 varies by two orders of magnitude depending on the orientation, while the activation energy E is similar (∼1.1 eV) for the (111) and (110) orientations and higher for the (001) orientation (∼1.4 eV). It is found that the nitrogen ion energy and the flux have the effect on the nitrogen transport in the bulk with higher energies (or fluxes) showing larger diffusion coefficients. The ion energy effect is more pronounced for the (001) than for the (111) orientation, while the flux effect is similar in both orientations. In addition, the diffusivity during post-nitriding thermal annealing without ion irradiation is found to be independent of the crystalline orientation. The observed radiation enhanced diffusion and anisotropy are discussed on the basis of nitrogen incorporation induced changes in the matrix structure (ASS decomposition and formation heterogeneous structure), ion bombardment induced effects (defects, localized vibrations) and correlated diffusion.

Page generated in 0.3198 seconds