• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 20
  • 17
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 19
  • 13
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

New Insights into Nucleophagy in S. cerevisiae

Karnebeck, Stefanie 10 March 2020 (has links)
No description available.
72

Etude des propriétés biologiques et antimicrobiennes de la pyocyanine, pigment redox-actif produit par Pseudomonas aeruginosa

Barakat, Rana 07 December 2012 (has links) (PDF)
La pyocyanine (PYO) est une phénazine de couleur bleu-vert, produite spécifiquement par la bactérie pathogène opportuniste Pseudomonas aeruginosa (Pa). La toxicité aérobie de la PYO envers les cellules de mammifères, les levures et les bactéries a été décrite de longue date, mais la compréhension des mécanismes d'action est encore lacunaire, en particulier en conditions de limitation en O2 (conditions rencontrées dans le contexte infectieux). De plus, il a récemment été montré que la PYO peut apporter des effets bénéfiques pour la souche productrice en hypoxie. Au cours de ce travail, nous avons réexaminé les effets de la PYO sur un large panel de bactéries dont son propre producteur (Pa) ainsi que sur un modèle cellulaire eucaryote Saccharomyces cerevisiae exposées à différentes tensions en O2. Nos données suggèrent que la toxicité aérobie de la PYO envers S. cerevisiae est multifactorielle, impliquant à la fois une interaction avec le complexe III de la chaîne respiratoire et l'induction d'un stress oxydatif. Pour la première fois, nous avons mis en évidence une toxicité de la PYO exacerbée en anaérobiose chez un eucaryote (S. cerevisiae). Le mécanisme d'action impliquerait le PYO radical. Nous avons également montré que la PYO peut inhiber la croissance aérobie et anaérobie des microorganismes concurrents, plus particulièrement S. aureus en bloquant le complexe III de la chaîne respiratoire. A l'inverse, la PYO peut stimuler la respiration de Pa surtout dans les conditions mimant le contexte infectieux (hypoxie, vie ralentie). Le complexe III et/ou les oxydases terminales cbb3 serait impliqué favorablement. En conclusion, la PYO jouerait à la fois un rôle de poison hypoxique mais aussi un rôle de navette redox bénéfique pour la survie et la virulence de Pa en hypoxie.
73

Engenharia de biorreatores contínuos com células imobilizadas para a bioconversão de soro e permeado de soro de queijo à bioetanol

Gabardo, Sabrina January 2015 (has links)
O soro e o permeado de soro de queijo, subprodutos da indústria de laticínios, constituem-se substratos alternativos, ricos em nutrientes e de grande potencial para a produção de etanol. Diante da necessidade de melhorias em processos fermentativos, a tecnologia de imobilização celular pode contribuir positivamente para processos mais eficazes e vantajosos. Nesse contexto, o presente trabalho teve como objetivo aperfeiçoar a produção de etanol a partir de soro e permeado de soro de queijo por diferentes leveduras em biorreatores de células imobilizadas operados em regime batelada e em sistema contínuo, bem como representar matematicamente o bioprocesso. Na primeira etapa deste trabalho, diferentes linhagens de Kluyveromyces marxianus e diferentes meios de cultivo foram testados em agitador rotacional e em biorreator de células imobilizadas, e os efeitos da taxa de diluição (D) e da concentração de substrato (C WP ) foram investigadas em biorreatores contínuos. Altos fatores de conversão (YEtOH/S) e de produtividade volumétrica (QP) foram obtidos pela linhagens K. marxianus CCT 4086 tanto em agitador rotacional quanto em biorreator com células imobilizadas em alginato de cálcio operado em regime batelada (0,47 g L-1 e 2,53 g L-1 h-1). Diante disso, esta linhagem foi escolhida para os testes posteriores. Aumentos consideráveis nos parâmetros de fermentação (YEtOH/S e QP) foram obtidos a partir do planejamento experimental hexagonal em biorreatores operados continuamente (0,51 g g-1 e 6,01 g L-1 h-1). Melhorias no processo ainda foram alcançadas em biorreatores contínuos de dois estágios operados em sequência, em que alta produtividade volumétrica (6,97 g L-1 h-1) e concentração de etanol (70,4 g L-1) foram observadas. Em uma segunda etapa deste trabalho, linhagens de Saccharomyces cerevisiae foram testadas para a bioconversão de soro e permeado de soro de queijo a etanol. Diferentes leveduras imobilizadas e estratégias de cultivo foram utilizadas para bioconverter meios não concentrados e concentrados, em biorreatores de leito fluidizado. Valores similares dos parâmetros fermentativos (YEtOH/S e QP) foram obtidos para o monocultivo das linhagens de S. cerevisiae (CAT-1 e PE-2). O co-cultivo de S. cerevisiae CAT-1 e K. marxianus CCT 4086 aumentou em quatro vezes a produtividade volumétrica em permeado de soro de queijo e em 69 % em soro de queijo, mas não superou os altos valores obtidos pela monocultura de K. marxianus CCT 4086 (0,49 g g-1 e 1, 68 g L-1 h-1). Aumentos na concentração de etanol foram alcançados a partir de meio concentrado (79,1 g L-1), e melhorias na produtividade volumétrica foram obtidas a partir de batelada repetida (2,8 g L-1 h-1). Em uma terceira etapa, foi realizada a modelagem matemática do bioprocesso da produção de etanol por soro de queijo a partir de K. marxianus CCT 4086, linhagem esta que conferiu os melhores resultados ao longo deste trabalho. O sistema contínuo A-stat (accelerostat technique) foi utilizado, tanto para cultivos de células livres quanto imobilizadas, onde duas taxas de aceleração foram testadas. Quatro modelos matemáticos não estruturados foram analisados, levando em consideração a limitação pelo substrato e a inibição pelo produto. Os resultados mostraram que as taxas de diluição (D) e de aceleração (a) afetam a fisiologia e o metabolismo celular. O estado estacionário foi alcançado para a menor taxa de aceleração (a = 0,0015 h-2), e um alto fator de conversão foi obtido (0,52 g g-1) nesta condição. A imobilização celular contribuiu para o aumento do fator de conversão em 23 % na condição de maior taxa de aceleração testada (a = 0,00667 h-2). Alto ajuste dos modelos preditivos para biomassa, substrato e produto foi obtido a partir da maior taxa de aceleração, contudo o fenômeno biológico foi melhor representado para a menor taxa de aceleração. Os modelos de Monod e de Levenspiel combinado com Ghose e Tyagi foram os mais apropriados para descrever o bioprocesso. / Whey and whey permeate, by-products of the dairy industry, are alternative substrates, rich in nutrients and with great potential for use in the ethanol production. Considering the need for improvements in fermentation processes, cell immobilization technology can positively contribute to more effective and advantageous bioprocesses. In this context, the aim of this work was to optimize the ethanol production from whey and whey permeate by different yeasts on immobilized batch fluidized bed bioreactors and in continuous systems, and also describe mathematically the bioprocess. In the first step, different strains of K. marxianus and cultivation media were tested in batch mode and the effects of dilution rate (D) and substrate concentration (C WP ) were investigated in continuous bioreactors. High ethanol yield (YEtOH/S) and ethanol productivities (QP) were obtained by K. marxianus CCT 4086, for both in shaker cultivation and in batch fluidized-bed bioreactors with immobilized cells in Ca-alginate (0.47 g L-1 e 2.53 g L-1 h-1). This strain was chosen for subsequent tests. Substantial increases in the fermentation parameters (YEtOH/S e QP) were obtained from the hexagonal experimental design in continuous bioreactors (0.51 g g-1 e 6.01 g L-1 h-1). Process improvements were achieved in two continuous fluidized-bed bioreactors operated in sequence, wherein high ethanol productivities (6.97 g L-1 h-1) and concentrations (70.4 g L-1) were obtained. Then, in a second step of this study, strains of S. cerevisiae were tested to bioconversion of lactose-hydrolysed whey and whey permeate into ethanol. Different immobilized strains in monoculture and coculture were used to the bioconversion of not concentrated or concentrated mediums in batch fluidized bed bioreactors. Similar values of the fermentation parameters (YEtOH/S e QP) were obtained for the strains S. cerevisiae (CAT-1 and PE-2). The co-culture of S. cerevisiae CAT- 1 and K. marxianus CCT 4086 increased four times the ethanol productivity in lactosehydrolyzed whey permeate and 69 % in lactose-hydrolyzed whey, but not attained the high values of K. marxianus CCT 4086 monoculture (0.49 g g-1 e 1.68 g L-1 h-1). Increases in the ethanol concentrations (79.1 g L-1) were obtained from concentrated media, and improvement in ethanol productivities was obtained by repeated batch (2.8 g L-1 h-1). In a third step, the mathematical modeling of the ethanol production from whey was performed, using K. marxianus CCT 4086 as biocatalyst due to the better results attained throughout of this work. The continuous A-stat system (accelerostat technique) was used for both free cell cultures and immobilized, and two acceleration rates were tested. Four unstructured mathematical models were analyzed, taking into account the limiting substrate and product inhibition. The results showed that the dilution rate (D) and the acceleration rate (a) affected cell physiology and metabolism. The steady state was attained for the lower acceleration rate (a = 0.0015 h-2), and in this condition a high ethanol yield was verified (0.52 g g-1). Cell immobilization increased 23 % of the ethanol yield for the highest acceleration rate (a = 0.00667 h-2) tested. High fit of the predictive models of biomass, lactose and ethanol concentrations were obtained from the high acceleration rate, however the biological phenomenon was better described for the lower acceleration rate. Among the set of models evaluated, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the bioprocess.
74

Engenharia de biorreatores contínuos com células imobilizadas para a bioconversão de soro e permeado de soro de queijo à bioetanol

Gabardo, Sabrina January 2015 (has links)
O soro e o permeado de soro de queijo, subprodutos da indústria de laticínios, constituem-se substratos alternativos, ricos em nutrientes e de grande potencial para a produção de etanol. Diante da necessidade de melhorias em processos fermentativos, a tecnologia de imobilização celular pode contribuir positivamente para processos mais eficazes e vantajosos. Nesse contexto, o presente trabalho teve como objetivo aperfeiçoar a produção de etanol a partir de soro e permeado de soro de queijo por diferentes leveduras em biorreatores de células imobilizadas operados em regime batelada e em sistema contínuo, bem como representar matematicamente o bioprocesso. Na primeira etapa deste trabalho, diferentes linhagens de Kluyveromyces marxianus e diferentes meios de cultivo foram testados em agitador rotacional e em biorreator de células imobilizadas, e os efeitos da taxa de diluição (D) e da concentração de substrato (C WP ) foram investigadas em biorreatores contínuos. Altos fatores de conversão (YEtOH/S) e de produtividade volumétrica (QP) foram obtidos pela linhagens K. marxianus CCT 4086 tanto em agitador rotacional quanto em biorreator com células imobilizadas em alginato de cálcio operado em regime batelada (0,47 g L-1 e 2,53 g L-1 h-1). Diante disso, esta linhagem foi escolhida para os testes posteriores. Aumentos consideráveis nos parâmetros de fermentação (YEtOH/S e QP) foram obtidos a partir do planejamento experimental hexagonal em biorreatores operados continuamente (0,51 g g-1 e 6,01 g L-1 h-1). Melhorias no processo ainda foram alcançadas em biorreatores contínuos de dois estágios operados em sequência, em que alta produtividade volumétrica (6,97 g L-1 h-1) e concentração de etanol (70,4 g L-1) foram observadas. Em uma segunda etapa deste trabalho, linhagens de Saccharomyces cerevisiae foram testadas para a bioconversão de soro e permeado de soro de queijo a etanol. Diferentes leveduras imobilizadas e estratégias de cultivo foram utilizadas para bioconverter meios não concentrados e concentrados, em biorreatores de leito fluidizado. Valores similares dos parâmetros fermentativos (YEtOH/S e QP) foram obtidos para o monocultivo das linhagens de S. cerevisiae (CAT-1 e PE-2). O co-cultivo de S. cerevisiae CAT-1 e K. marxianus CCT 4086 aumentou em quatro vezes a produtividade volumétrica em permeado de soro de queijo e em 69 % em soro de queijo, mas não superou os altos valores obtidos pela monocultura de K. marxianus CCT 4086 (0,49 g g-1 e 1, 68 g L-1 h-1). Aumentos na concentração de etanol foram alcançados a partir de meio concentrado (79,1 g L-1), e melhorias na produtividade volumétrica foram obtidas a partir de batelada repetida (2,8 g L-1 h-1). Em uma terceira etapa, foi realizada a modelagem matemática do bioprocesso da produção de etanol por soro de queijo a partir de K. marxianus CCT 4086, linhagem esta que conferiu os melhores resultados ao longo deste trabalho. O sistema contínuo A-stat (accelerostat technique) foi utilizado, tanto para cultivos de células livres quanto imobilizadas, onde duas taxas de aceleração foram testadas. Quatro modelos matemáticos não estruturados foram analisados, levando em consideração a limitação pelo substrato e a inibição pelo produto. Os resultados mostraram que as taxas de diluição (D) e de aceleração (a) afetam a fisiologia e o metabolismo celular. O estado estacionário foi alcançado para a menor taxa de aceleração (a = 0,0015 h-2), e um alto fator de conversão foi obtido (0,52 g g-1) nesta condição. A imobilização celular contribuiu para o aumento do fator de conversão em 23 % na condição de maior taxa de aceleração testada (a = 0,00667 h-2). Alto ajuste dos modelos preditivos para biomassa, substrato e produto foi obtido a partir da maior taxa de aceleração, contudo o fenômeno biológico foi melhor representado para a menor taxa de aceleração. Os modelos de Monod e de Levenspiel combinado com Ghose e Tyagi foram os mais apropriados para descrever o bioprocesso. / Whey and whey permeate, by-products of the dairy industry, are alternative substrates, rich in nutrients and with great potential for use in the ethanol production. Considering the need for improvements in fermentation processes, cell immobilization technology can positively contribute to more effective and advantageous bioprocesses. In this context, the aim of this work was to optimize the ethanol production from whey and whey permeate by different yeasts on immobilized batch fluidized bed bioreactors and in continuous systems, and also describe mathematically the bioprocess. In the first step, different strains of K. marxianus and cultivation media were tested in batch mode and the effects of dilution rate (D) and substrate concentration (C WP ) were investigated in continuous bioreactors. High ethanol yield (YEtOH/S) and ethanol productivities (QP) were obtained by K. marxianus CCT 4086, for both in shaker cultivation and in batch fluidized-bed bioreactors with immobilized cells in Ca-alginate (0.47 g L-1 e 2.53 g L-1 h-1). This strain was chosen for subsequent tests. Substantial increases in the fermentation parameters (YEtOH/S e QP) were obtained from the hexagonal experimental design in continuous bioreactors (0.51 g g-1 e 6.01 g L-1 h-1). Process improvements were achieved in two continuous fluidized-bed bioreactors operated in sequence, wherein high ethanol productivities (6.97 g L-1 h-1) and concentrations (70.4 g L-1) were obtained. Then, in a second step of this study, strains of S. cerevisiae were tested to bioconversion of lactose-hydrolysed whey and whey permeate into ethanol. Different immobilized strains in monoculture and coculture were used to the bioconversion of not concentrated or concentrated mediums in batch fluidized bed bioreactors. Similar values of the fermentation parameters (YEtOH/S e QP) were obtained for the strains S. cerevisiae (CAT-1 and PE-2). The co-culture of S. cerevisiae CAT- 1 and K. marxianus CCT 4086 increased four times the ethanol productivity in lactosehydrolyzed whey permeate and 69 % in lactose-hydrolyzed whey, but not attained the high values of K. marxianus CCT 4086 monoculture (0.49 g g-1 e 1.68 g L-1 h-1). Increases in the ethanol concentrations (79.1 g L-1) were obtained from concentrated media, and improvement in ethanol productivities was obtained by repeated batch (2.8 g L-1 h-1). In a third step, the mathematical modeling of the ethanol production from whey was performed, using K. marxianus CCT 4086 as biocatalyst due to the better results attained throughout of this work. The continuous A-stat system (accelerostat technique) was used for both free cell cultures and immobilized, and two acceleration rates were tested. Four unstructured mathematical models were analyzed, taking into account the limiting substrate and product inhibition. The results showed that the dilution rate (D) and the acceleration rate (a) affected cell physiology and metabolism. The steady state was attained for the lower acceleration rate (a = 0.0015 h-2), and in this condition a high ethanol yield was verified (0.52 g g-1). Cell immobilization increased 23 % of the ethanol yield for the highest acceleration rate (a = 0.00667 h-2) tested. High fit of the predictive models of biomass, lactose and ethanol concentrations were obtained from the high acceleration rate, however the biological phenomenon was better described for the lower acceleration rate. Among the set of models evaluated, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the bioprocess.
75

Engenharia de biorreatores contínuos com células imobilizadas para a bioconversão de soro e permeado de soro de queijo à bioetanol

Gabardo, Sabrina January 2015 (has links)
O soro e o permeado de soro de queijo, subprodutos da indústria de laticínios, constituem-se substratos alternativos, ricos em nutrientes e de grande potencial para a produção de etanol. Diante da necessidade de melhorias em processos fermentativos, a tecnologia de imobilização celular pode contribuir positivamente para processos mais eficazes e vantajosos. Nesse contexto, o presente trabalho teve como objetivo aperfeiçoar a produção de etanol a partir de soro e permeado de soro de queijo por diferentes leveduras em biorreatores de células imobilizadas operados em regime batelada e em sistema contínuo, bem como representar matematicamente o bioprocesso. Na primeira etapa deste trabalho, diferentes linhagens de Kluyveromyces marxianus e diferentes meios de cultivo foram testados em agitador rotacional e em biorreator de células imobilizadas, e os efeitos da taxa de diluição (D) e da concentração de substrato (C WP ) foram investigadas em biorreatores contínuos. Altos fatores de conversão (YEtOH/S) e de produtividade volumétrica (QP) foram obtidos pela linhagens K. marxianus CCT 4086 tanto em agitador rotacional quanto em biorreator com células imobilizadas em alginato de cálcio operado em regime batelada (0,47 g L-1 e 2,53 g L-1 h-1). Diante disso, esta linhagem foi escolhida para os testes posteriores. Aumentos consideráveis nos parâmetros de fermentação (YEtOH/S e QP) foram obtidos a partir do planejamento experimental hexagonal em biorreatores operados continuamente (0,51 g g-1 e 6,01 g L-1 h-1). Melhorias no processo ainda foram alcançadas em biorreatores contínuos de dois estágios operados em sequência, em que alta produtividade volumétrica (6,97 g L-1 h-1) e concentração de etanol (70,4 g L-1) foram observadas. Em uma segunda etapa deste trabalho, linhagens de Saccharomyces cerevisiae foram testadas para a bioconversão de soro e permeado de soro de queijo a etanol. Diferentes leveduras imobilizadas e estratégias de cultivo foram utilizadas para bioconverter meios não concentrados e concentrados, em biorreatores de leito fluidizado. Valores similares dos parâmetros fermentativos (YEtOH/S e QP) foram obtidos para o monocultivo das linhagens de S. cerevisiae (CAT-1 e PE-2). O co-cultivo de S. cerevisiae CAT-1 e K. marxianus CCT 4086 aumentou em quatro vezes a produtividade volumétrica em permeado de soro de queijo e em 69 % em soro de queijo, mas não superou os altos valores obtidos pela monocultura de K. marxianus CCT 4086 (0,49 g g-1 e 1, 68 g L-1 h-1). Aumentos na concentração de etanol foram alcançados a partir de meio concentrado (79,1 g L-1), e melhorias na produtividade volumétrica foram obtidas a partir de batelada repetida (2,8 g L-1 h-1). Em uma terceira etapa, foi realizada a modelagem matemática do bioprocesso da produção de etanol por soro de queijo a partir de K. marxianus CCT 4086, linhagem esta que conferiu os melhores resultados ao longo deste trabalho. O sistema contínuo A-stat (accelerostat technique) foi utilizado, tanto para cultivos de células livres quanto imobilizadas, onde duas taxas de aceleração foram testadas. Quatro modelos matemáticos não estruturados foram analisados, levando em consideração a limitação pelo substrato e a inibição pelo produto. Os resultados mostraram que as taxas de diluição (D) e de aceleração (a) afetam a fisiologia e o metabolismo celular. O estado estacionário foi alcançado para a menor taxa de aceleração (a = 0,0015 h-2), e um alto fator de conversão foi obtido (0,52 g g-1) nesta condição. A imobilização celular contribuiu para o aumento do fator de conversão em 23 % na condição de maior taxa de aceleração testada (a = 0,00667 h-2). Alto ajuste dos modelos preditivos para biomassa, substrato e produto foi obtido a partir da maior taxa de aceleração, contudo o fenômeno biológico foi melhor representado para a menor taxa de aceleração. Os modelos de Monod e de Levenspiel combinado com Ghose e Tyagi foram os mais apropriados para descrever o bioprocesso. / Whey and whey permeate, by-products of the dairy industry, are alternative substrates, rich in nutrients and with great potential for use in the ethanol production. Considering the need for improvements in fermentation processes, cell immobilization technology can positively contribute to more effective and advantageous bioprocesses. In this context, the aim of this work was to optimize the ethanol production from whey and whey permeate by different yeasts on immobilized batch fluidized bed bioreactors and in continuous systems, and also describe mathematically the bioprocess. In the first step, different strains of K. marxianus and cultivation media were tested in batch mode and the effects of dilution rate (D) and substrate concentration (C WP ) were investigated in continuous bioreactors. High ethanol yield (YEtOH/S) and ethanol productivities (QP) were obtained by K. marxianus CCT 4086, for both in shaker cultivation and in batch fluidized-bed bioreactors with immobilized cells in Ca-alginate (0.47 g L-1 e 2.53 g L-1 h-1). This strain was chosen for subsequent tests. Substantial increases in the fermentation parameters (YEtOH/S e QP) were obtained from the hexagonal experimental design in continuous bioreactors (0.51 g g-1 e 6.01 g L-1 h-1). Process improvements were achieved in two continuous fluidized-bed bioreactors operated in sequence, wherein high ethanol productivities (6.97 g L-1 h-1) and concentrations (70.4 g L-1) were obtained. Then, in a second step of this study, strains of S. cerevisiae were tested to bioconversion of lactose-hydrolysed whey and whey permeate into ethanol. Different immobilized strains in monoculture and coculture were used to the bioconversion of not concentrated or concentrated mediums in batch fluidized bed bioreactors. Similar values of the fermentation parameters (YEtOH/S e QP) were obtained for the strains S. cerevisiae (CAT-1 and PE-2). The co-culture of S. cerevisiae CAT- 1 and K. marxianus CCT 4086 increased four times the ethanol productivity in lactosehydrolyzed whey permeate and 69 % in lactose-hydrolyzed whey, but not attained the high values of K. marxianus CCT 4086 monoculture (0.49 g g-1 e 1.68 g L-1 h-1). Increases in the ethanol concentrations (79.1 g L-1) were obtained from concentrated media, and improvement in ethanol productivities was obtained by repeated batch (2.8 g L-1 h-1). In a third step, the mathematical modeling of the ethanol production from whey was performed, using K. marxianus CCT 4086 as biocatalyst due to the better results attained throughout of this work. The continuous A-stat system (accelerostat technique) was used for both free cell cultures and immobilized, and two acceleration rates were tested. Four unstructured mathematical models were analyzed, taking into account the limiting substrate and product inhibition. The results showed that the dilution rate (D) and the acceleration rate (a) affected cell physiology and metabolism. The steady state was attained for the lower acceleration rate (a = 0.0015 h-2), and in this condition a high ethanol yield was verified (0.52 g g-1). Cell immobilization increased 23 % of the ethanol yield for the highest acceleration rate (a = 0.00667 h-2) tested. High fit of the predictive models of biomass, lactose and ethanol concentrations were obtained from the high acceleration rate, however the biological phenomenon was better described for the lower acceleration rate. Among the set of models evaluated, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the bioprocess.
76

Stimulation of the fermentation by pulsed electric fields : Saccharomyces cerevisiae case / Stimulation de l’activité fermentaire par champs électriques pulsés : cas de Saccharomyces cerevisiae

Mattar, Jessy 25 June 2015 (has links)
L’intégration croissante des procédés innovants comme les ultrasons, les champs magnétiques, et les champs électriques pulsés a pour but d’améliorer et de stabiliser le déroulement des procédés de fermentation. Le champ électrique pulsé (CEP) est un procédé athermique généralement utilisé pour l’inactivation des pathogènes (Barbosa-Cánovas et al., 2001) ainsi que pour l’extraction des composés intracellulaires d’intérêt (El Zakhem et al., 2006a; Vorobiev & Lebovka 2006). Dans ce travail de thèse, nous proposons d’évaluer l’activité microbienne des cellules soumises à un traitement électrique modéré. Un intérêt particulier est apporté à des aspects fondamentaux comme la croissance et le métabolisme des cellules. Sur le plan technologique, le but fondamentale est de mettre en place et optimiser des protocoles de stimulation de microorganismes pour intensifier les bioprocédés. La fermentation de microorganismes stimulés par CEP a montré des cinétiques plus rapides que les levures non traitées. La stimulation de l’activité fermentaire s’est révélée grâce au suivi de la masse du milieu, les solutés solubles, l’absorbance, les sucres... L’optimisation des protocoles de stimulation a permis de réveler deux comportements logarithmique et saturé. Il a été montré une dépendance importante de l’énergie spécifique sur certains aspects physiologiques notamment la taille et le nombre de colonies. / The continually increasing integration of innovative technologies such as ultrasound, magnetic fields, and pulsed electric fields aims to improve and stabilize the course of fermentation processes. The pulsed electric field (PEF) is an athermal process generally used for pathogen inactivation (Barbosa-Canovas et al., 2001) and for the extraction of intracellular compounds of interest (El Zakhem et al., 2006a; Vorobiev & Lebovka 2006). In this thesis, we propose to evaluate the microbial activity of cells subjected to a moderate electric treatment. Special consideration is given to key aspects such as growth and cell metabolism. Technologically, the fundamental purpose is to implement and optimize microorganisms’ stimulation protocols to intensify their bioprocesses. The positive impact of PEF pre-treatment on yeast cells was shown by their faster fermentation kinetics compared to the control. This was proven by monitoring the weight of the ferment, the soluble solutes, the UV absorbance, and sugar consumption profiles. Two behaviors of electrostimulation, “logarithmic” and “saturated”, were revealed by optimization of the stimulation protocols. Finally, a relationship between the growth rate, the size of the colonies and the applied specific energy is deduced.
77

Identification And Characterization Of Factors That Interact With The PRP24 Gene Product During Pre-mRNA Splicing In Saccharomyces Cerevisiae

Vaidya, Vaijayanti 11 1900 (has links) (PDF)
No description available.
78

An Integrative Genome-Based Metabolic Network Map of Saccharomyces Cerevisiae on Cytoscape: Toward Developing A Comprehensive Model

Hamidi, Aram 03 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Metabolic flux analyses and their more comprehensive forms, genome-scale metabolic networks (GSMNs), have gained tremendous attention in industrial and medical research. Saccharomyces cerevisiae (S. cerevisiae) is one of the organisms that has had its GSMN subjected to multiple frequent updates. The objective of this study is to develop a visualization tool for the GSMN of S. cerevisiae for educational and research purposes. This visualization tool is called the Master Metabolic Map of Saccharomyces cerevisiae (MMMSC). In this study, a metabolic database of S. cerevisiae developed by us was transferred to Cytoscape, a useful and efficient bioinformatics software platform for visualizing molecular networks. After the MMMSC was created, nodes, representing metabolites and enzymes, and edges, representing the chemical reactions that connect the nodes, were curated manually to develop a metabolic visualization map of the whole metabolic system of S. cerevisiae (Figure 4). In the discussion, examples are provided regarding possible applications of MMMSC to predict possible effects of the manipulation of the S. cerevisiae metabolome for industrial and medical purposes. Ultimately, it is concluded that further work is needed to complete the metabolic database of S. cerevisiae and the related MMMSC. In future studies, these tools may be integrated with other omics and other approaches, especially the directed-evolution approach, to increase cost and time efficiency of future research and to find solutions for complex and, thus far, poorly managed environmental and health problems.
79

Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis

Medhi, D., Goldman, Alastair S.H., Lichten, M. 01 October 2019 (has links)
Yes / Abstract The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions.
80

Étude de complexes ribonucléoprotéiques impliqués dans la régulation de l'expression des protéines au cours de l'initiation de la traduction

Ménade, Marie 18 September 2007 (has links) (PDF)
L'expression génique est régulée à de nombreuses étapes de la vie cellulaire. La synthèse des protéines ou traduction, étape ultime de cette expression, est finement régulée. Elle comporte trois phases: l'initiation, l'élongation et la terminaison. L'initiation commence par l'établissement de la sous-unité ribosomique 40S sur cet ARNm qu'elle balaye ensuite jusqu'au codon initiation. Pour cela, des facteurs canoniques sont impliqués. Parmi eux, le facteur eIF3 interagit directement avec celle-ci. Au cours de mes travaux, j'ai étudié dans une première partie l'interaction putative entre le facteur eIF3 et la petite sous-unité ribosomique 40S. Le ribosome est constitué par deux types d'entités : des protéines ribosomiques et l'ARNr. Le facteur eIF3, contient au moins 13 sous-unités, dont deux possèdent un RRM, et sont potentiellement capables de lier cet ARNr via leur RRM: p44 et p116. eIF3p44 a montré auparavant qu'elle pouvait lier l'ARNr 18S. J'ai effectué un criblage d'une banque de fragments de cet ARNr pour identifier un site de liaison de p44 sur la sous-unité 40S. Les ARNm néo-synthétisés sont transportés et localisés afin de permettre l'expression des protéines au moment opportun et en un lieu précis de la cellule. Dans une deuxième partie, j'ai étudié des interactions impliquées dans le contrôle de l'initiation de la traduction d'un ARNm localisé chez la levure S. cerevisiae pendant son transport : l'ARNm ASH1. Il est régulé par Khd1p, protéine à trois domaines KH, qui lie directement un de ses éléments de localisation. Cette interaction est abolie par la phosphorylation de Khd1p lorsque l'ARNm est correctement localisé.

Page generated in 0.0577 seconds