• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The 26S Proteasome and Histone Modifying Enzymes Regulate

Truax, Agnieszka D 07 May 2011 (has links)
Major Histocompatibility Complex Class-II (MHC-II) molecules are critical regulators of adaptive immunity that present extracellular antigens required to activate CD4+ T cells. MHC-II are regulated at the level of transcription by master regulator, the Class II Transactivator (CIITA), whose association with the MHC-II promoter is necessary to initiate transcription. Recently, much research focused on novel mechanisms of transcriptional regulation of critical genes like MHC-II and CIITA; findings that the macromolecular complex of the 26S-proteasome is involved in transcription have been perhaps the most exciting as they impart novel functions to a well studied system. Proteasome is a multi-subunit complex composed of a 20S-core particle capped by a 19S-regulatory particle. The 19S contains six ATPases which are required for transcription initiation and elongation. We demonstrate that 19S ATPase-S6a inducibly associates with CIITA promoters. Decreased expression of S6a negatively impacts recruitment of the transcription factors STAT-1 and IRF-1 to the CIITA due to significant loss in histone H3 and H4 acetylation. S6a is robustly recruited to CIITA coding regions, where S6a binding coordinates with that of RNA polymerase II. RNAi mediated S6a knockdown significantly diminishes recruitment of Pol II and P-TEF-b components to CIITA coding regions, indicating S6a plays important roles in transcriptional elongation. Our research is focused on the ways in which accessibility to and transcription of DNA is regulated. While cancers are frequently linked to dysregulated gene expression, contribution of epigenetics to cancers remains unknown. To achieve metastatic ability, tumors alter gene expression to escape host immunosurveilance. MHC-II and CIITA expression are significantly downregulated in highly metastatic MDA-MB-435 breast cancer cells. This suppression correlates with elevated levels of the silencing modification H3K27me3 at CIITA and a significant reduction in Pol II recruitment. We observe elevated binding of the histone methyltransferase to CIITApIV and demonstrate this enzyme is a master regulator of CIITA gene expression. EZH2 knockdown results in significant increases in CIITA and MHC-II transcript levels in metastatic cells. In sum, transcriptional regulation by the 19S-proteasome and histone modifying enzymes represents novel mechanisms of control of mammalian gene expression and present novel therapeutic targets for manipulating MHC expression in disease.
2

Role of 26S Proteasome and Regulator of G-Protein Signaling 10 in Regulating Neuroinflammation in the Central Nervous System

Maganti, Nagini 17 December 2015 (has links)
Major histocompatibility complex molecules (MHCII) are cell surface glycoproteins that present extracellular antigens to CD4+ T lymphocytes and initiate adaptive immune responses. Apart from their protective role, overexpression of MHCII contributes to autoimmune disorders where the immune system attacks our own tissues. Autoimmune diseases are characterized by self-reactive responses to autoantigens, promoting tissue damage, inflammation mediated by proinflammatory cytokines, autoreactive lymphocytes, and autoantibodies. MHCII molecules are tightly regulated at the level of transcription by Class II transactivator (CIITA). CIITA associates with an enhanceosome complex at MHCII promoters and regulates the expression of MHCII. It is thus crucial to understand the regulation of CIITA expression in order to regulate MHCII in autoimmune diseases. Our lab has shown that the 19S ATPases of the 26S proteasome associate with MHCII and CIITA promoters and play important roles in gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear. Here, we define novel roles of the 19S ATPases Sug1, S7, and S6a in expression of CIITApIV genes. These ATPases are recruited to CIITApIV promoters and coding regions, interact with the elongation factor PTEFb, and with Ser5 phosphorylated RNA Pol II. Both the generation of CIITApIV transcripts and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by knockdown of 19S ATPases. Alternatively, inflammation is also suppressed via the Regulator of G-protein signaling 10 (RGS10) in microglial cells which express high levels of RGS10 and promote homeostasis in the central nervous system. However, chronic activation of microglial cells leads to release of cytokines which cause neuroinflammation. Our investigation of roles played by RGS10 in chronically activated microglial cells indicates that RGS10 binds to promoters of IL-1β, and TNF-α and regulates these genes, while the molecular mechanism remains to be investigated. Together, our observations indicate roles for the UPS in modulating gene expression and for RGS10 in regulating proinflammatory cytokines in microglial cells, each of which provides novel therapeutic targets to combat inflammation in autoimmune and neurodegenerative diseases.

Page generated in 0.0617 seconds