• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solar-powered direct contact membrane distillation system: performance and water cost evaluation

Soomro, M.I., Kumar, S., Ullah, A., Shar, Muhammad A., Alhazaa, A. 12 December 2022 (has links)
Yes / Fresh water is crucial for life, supporting human civilizations and ecosystems, and its production is one of the global issues. To cope with this issue, we evaluated the performance and cost of a solar-powered direct contact membrane distillation (DCMD) unit for fresh water production in Karachi, Pakistan. The solar water heating system (SWHS) was evaluated with the help of a system advisor model (SAM) tool. The evaluation of the DCMD unit was performed by solving the DCMD mathematical model through a numerical iterative method in MATLAB software®. For the SWHS, the simulation results showed that the highest average temperature of 55.05 ◦C and lowest average temperature of 44.26 ◦C were achieved in May and December, respectively. The capacity factor and solar fraction of the SWHS were found to be 27.9% and 87%, respectively. An exponential increase from 11.4 kg/m2 ·h to 23.23 kg/m2 ·h in permeate flux was observed when increasing the hot water temperatures from 44 ◦C to 56 ◦C. In the proposed system, a maximum of 279.82 L/day fresh water was produced in May and a minimum of 146.83 L/day in January. On average, the solar-powered DCMD system produced 217.66 L/day with a levelized water cost of 23.01 USD/m3 / This research was funded by the Researcher’s Supporting Project Number (RSP-2021/269), King Saud University, Riyadh, Saudi Arabia.

Page generated in 0.0225 seconds