• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of a Putative Phospholipase D ´ Like Gene as a Lipid Signaling Modulator and Its Role in Salicylic Acid Mediated Defense Pathway in Nicotiana tabacum

Dean, Phillip T. 01 December 2014 (has links)
Plants are in a perpetual evolutionary arms race with a wide range of pathogens. Their sessile nature has led plants to evolve defense mechanisms that can quickly recognize a unique stressor and deploy a resistance tailored for a specific attack. The salicylic acid (SA) mediated defense pathway has been shown to be one of the major defense tactics plants can initiate to defend themselves against microbial pathogens. Following a pathogen attack high levels of methyl salicylate (MeSA) are produced that can be converted to SA by the enzyme salicylic acid binding protein 2 (SABP2). A yeast two-hybrid screening was performed to identify protein interactions with SABP2 to better understand the regulation of the enzyme on a cellular level. SBIP-436 is an interacting protein of tobacco SABP2 which showed high homology to phospholipase D-δ (PLD- δ). With an abundance of stimulators PLD- δ may be a lipid signaling modulator developed to perform various functions in different situations. PLD- δ may be a key player in a lipid signaling cascade in the SA mediated defense pathway. We present a novel Nicotiana tabacum PLD- δ putative gene construct. We demonstrate that the putative PLD- δ is subject to alternative splicing and its expression is differentially modulated under biotic and abiotic stress. Our results indicate that this putative PLD- δ may play a role in the SA mediated defense pathway.

Page generated in 0.0399 seconds