1 |
Response of Reinforced Concrete Columns Subjected to Impact LoadingImbeau, Paul 16 July 2012 (has links)
Reinforced Concrete (RC) bridge piers, RC columns along exterior of buildings or those located in parking garages are designed to support large compressive axial loads but are vulnerable to transverse out-of-plane loadings, such as those arising from impacts or explosions. To address a lack of understanding regarding blast and impact response of RC members and the need for retrofit techniques to address deficiencies in existing structures, a multi-disciplinary team including various institutes of the National Research Council and the University of Ottawa has initiated work towards developing a fibre reinforced polymer composite protection system for RC columns subjected to extreme shocks. This thesis will focus on the impact program of the aforementioned project. An extensive literature review was conducted to gain a better understanding of: impact loading and associated dynamic effects; experimental testing of RC members subjected to impact; experimental testing of axially loaded members; and retrofit methods for the protection of RC under impact loading. Five half-scale RC columns were constructed and tested using a drop-weight impact machine and two additional specimens were tested under static loading. Deflections, strain distributions within the columns, impact loads and reaction loads were measured during the testing of the built RC members. Comparisons of experimental datum were established between members with differing levels of axial load and between a retrofitted and a non-retrofitted member. Single-degree-of-freedom analysis was used to obtain the predicted response of certain columns under impact loading allowing for comparisons with experimental data.
|
2 |
Response of Reinforced Concrete Columns Subjected to Impact LoadingImbeau, Paul 16 July 2012 (has links)
Reinforced Concrete (RC) bridge piers, RC columns along exterior of buildings or those located in parking garages are designed to support large compressive axial loads but are vulnerable to transverse out-of-plane loadings, such as those arising from impacts or explosions. To address a lack of understanding regarding blast and impact response of RC members and the need for retrofit techniques to address deficiencies in existing structures, a multi-disciplinary team including various institutes of the National Research Council and the University of Ottawa has initiated work towards developing a fibre reinforced polymer composite protection system for RC columns subjected to extreme shocks. This thesis will focus on the impact program of the aforementioned project. An extensive literature review was conducted to gain a better understanding of: impact loading and associated dynamic effects; experimental testing of RC members subjected to impact; experimental testing of axially loaded members; and retrofit methods for the protection of RC under impact loading. Five half-scale RC columns were constructed and tested using a drop-weight impact machine and two additional specimens were tested under static loading. Deflections, strain distributions within the columns, impact loads and reaction loads were measured during the testing of the built RC members. Comparisons of experimental datum were established between members with differing levels of axial load and between a retrofitted and a non-retrofitted member. Single-degree-of-freedom analysis was used to obtain the predicted response of certain columns under impact loading allowing for comparisons with experimental data.
|
3 |
Response of Reinforced Concrete Columns Subjected to Impact LoadingImbeau, Paul January 2012 (has links)
Reinforced Concrete (RC) bridge piers, RC columns along exterior of buildings or those located in parking garages are designed to support large compressive axial loads but are vulnerable to transverse out-of-plane loadings, such as those arising from impacts or explosions. To address a lack of understanding regarding blast and impact response of RC members and the need for retrofit techniques to address deficiencies in existing structures, a multi-disciplinary team including various institutes of the National Research Council and the University of Ottawa has initiated work towards developing a fibre reinforced polymer composite protection system for RC columns subjected to extreme shocks. This thesis will focus on the impact program of the aforementioned project. An extensive literature review was conducted to gain a better understanding of: impact loading and associated dynamic effects; experimental testing of RC members subjected to impact; experimental testing of axially loaded members; and retrofit methods for the protection of RC under impact loading. Five half-scale RC columns were constructed and tested using a drop-weight impact machine and two additional specimens were tested under static loading. Deflections, strain distributions within the columns, impact loads and reaction loads were measured during the testing of the built RC members. Comparisons of experimental datum were established between members with differing levels of axial load and between a retrofitted and a non-retrofitted member. Single-degree-of-freedom analysis was used to obtain the predicted response of certain columns under impact loading allowing for comparisons with experimental data.
|
4 |
Effect of Corrosion on the Behavior of Reinforced Concrete Beams Subject to Blast LoadingMyers, Daniel Lloyd 13 May 2024 (has links)
Corrosion of reinforcing steel embedded in concrete due to the presence of moisture, aggressive chemicals, inadequate cover, and other factors can lead to deterioration that substantially reduces the strength and serviceability of the affected structure. Accounting for corrosion degradation is critical for evaluation and assessment of the load carrying capacity of existing reinforced concrete (RC) structures. However, little is known about the relationship between high strain rate blast loading and the degradation effects that govern corrosion damaged structures such as concrete cover cracking, reduction in reinforcement areas, and deterioration of bond between concrete and steel. Ten identical RC beams were constructed and tested, half under blast loading conditions produced using the Virginia Tech Shock Tube Research Facility and the other half under quasi-static loading. The blast tests were conducted to investigate how increasing blast pressure and impulse affect the global displacement response and damage modes of beams subjected to blast loads. The quasi-static tests were performed to establish fundamental data on the load-deflection characteristics of corroded RC beams. One beam from each testing group served as a control specimen and was not corroded while the remaining beams were subjected to varying levels of corrosion (5%, 10%, 15%, and 20%) of the longitudinal reinforcement along the midspan region. The specimens were corroded using an accelerated corrosion technique in a tank of 3% sodium chloride solution and a constant electrical current, creating a controlled environment for varying levels of corrosion. An analytical model was also created using a single degree of freedom (SDOF) approach which predicted the performance of corroded RC beams under blast loading.
The results of the quasi-static tests revealed that as corrosion levels increased, the load to cause yielding decreased, the yield displacements decreased, and failure occurred earlier for all specimens. This was accompanied by increased damage to the concrete cover and the addition of longitudinal corrosion induced cracking. For the blast loaded specimens, the results demonstrated that the maximum displacements and residual displacements increased beyond the expected response limits for corrosion levels greater than 5%, but at corrosion levels less than 5% there was no significant change in displacements. Damage levels increased by one or more categories with the introduction of even small levels of corrosion of less than 5%. At corrosion levels greater than 5%, before loading was applied, the specimens exhibited moderate damage due to the introduction of corrosion induced cracking. After loading, the specimens sustained hazardous damage at progressively lower blast volumes. The failure mode changed from ductile to sudden and brittle failure at corrosion levels greater than 5% but remained ductile with flexural failures at low corrosion levels below 5%. The experimental results could be predicted with a high level of accuracy using the SDOF approach, provided that the degraded strength of corroded concrete cover, degraded mechanical properties of corroded steel, length of the corroded region, and determination of either uniform or pitting corrosion are accounted for. Overall, the introduction of corrosion to an RC beam subjected to blast loading resulted in decreased strength and ductility across all specimens but with most disastrous effects occurring at corrosion levels of 5% or greater. A recommendation is made to adjust the response limits in ASCE/SEI 59 to account for corrosion in RC beams. / Master of Science / The threat of blast loads, resulting from either terrorist attacks or accidental explosions, poses a significant threat to the structural integrity of buildings, life safety of occupants, and the functionality of the structure. Corrosion of reinforcing steel embedded in concrete, due to the presence of moisture, aggressive chemicals, and other factors, can lead to deterioration that substantially weakens the affected structure. Accounting for corrosion degradation is critical for evaluation and assessment of the strength of existing reinforced concrete structures. However, little is known about the effects of blast loading on the adverse nature that governs corrosion damaged structures. Ten identical reinforced concrete beams were constructed and tested, half under blast loading and the other half under quasi-static loading. The blast loaded beams were subjected to a series of increasing blast volumes until failure was reached. Five identical beams were tested under quasi-static loading to provide a baseline comparison against the blast loaded beams. One beam from each testing group served as a control specimen and was not corroded while the remaining beams were subjected to varying levels of corrosion of the steel reinforcement. An analytical model was also created to predict the performance of corroded reinforced concrete beams under blast loading. The results of the study showed that as corrosion levels increased, the displacements increased beyond the expected response limits. Damage levels became increasingly more severe with the introduction of corrosion at all levels. The behavior changed from ductile to brittle at corrosion levels greater than 5% but remained ductile with flexural failures at corrosion levels below 5%. Overall, the introduction of corrosion to a concrete beam subjected to blast loading resulted in decreased strength and ductility across all specimens but with most disastrous effects occurring at corrosion levels of 5% or greater. A recommendation is made to adjust the response the limits in the code to account for corrosion in reinforced concrete beams.
|
5 |
Blast Performance of Reiforced Concrete Beams Constructed with High-Strength Concrete and High-Strength ReinforcementLi, Yang January 2016 (has links)
This thesis focuses on the dynamic and static behaviour of reinforced concrete beams built using high-strength concrete and high-strength steel reinforcement. As part of this study, a total of 8 high-strength concrete beams, built with and without steel fibres, and reinforced with high strength ASTM A1035 bars are tested under simulated blast loading using the University of Ottawa shock-tube, with an additional 3 companion beams tested under quasi-static loading. The variables considered in this study include: concrete type, fibre content, steel reinforcement ratio and steel reinforcement type. The behaviour of the beams with high-strength steel bars is compared to a companion set of beams reinforced with conventional steel reinforcement. The criteria used to evaluate the blast performance of the beams includes: overall blast capacity, maximum and residual displacements, secondary fragmentation and crack control. The dynamic results show that high strength concrete beams reinforced with high-strength steel are able to resist higher blast loads and reduce displacements when compared to companion beams with conventional steel reinforcement. The results also demonstrate that the addition of steel fibres is effective in controlling crack formation, minimizing secondary blast fragments, reducing displacements and further increasing overall blast capacity. However, the use of high-strength steel and high-strength concrete also shows potential for brittle failures under extreme blast pressures. The static results show that specimens with high-strength steel bars do not increase beam stiffness, but significantly increase peak load carrying capacity when compared to beams with the same ratio of conventional steel reinforcement. The analytical research program aims at predicting the response of the test beams using dynamic inelastic single-degree-of-freedom (SDOF) analysis and includes a sensitivity analysis examining the effect of various modelling parameters on the response predictions. Overall the analytical results demonstrate that SDOF analysis can be used to predict the blast response of beams built with high-strength concrete and steel reinforcement with acceptable accuracy.
|
6 |
Blast Performance of Hybrid GFRP and Steel Reinforced Concrete BeamsJohnson, Jalen Gerreld 22 June 2020 (has links)
The threat of terrorist bombings and accidental industrial explosions motivates the need for more economical and efficient blast-resistant construction techniques that offer enhanced levels of protection at reduced component damage levels. Despite having a high strength-to-weight ratio and being chemically inert, fiber reinforced polymer (FRP) reinforcing bars are not currently used in blast-resistant reinforced concrete due to their brittle nature and lack of ductility. However, the innovative use of blended mixtures of FRP and steel rebar as tensile reinforcement promises to address these limitations through self-centering behavior that provides reductions in residual damage and enhancements in flexural performance. This thesis presents the results of an experimental and analytical investigation on the effect of hybrid arrangements of glass fiber reinforced polymer (GFRP) and conventional mild steel reinforcement on the blast performance of reinforced concrete beams.
Seven large-scale reinforced concrete beams with different combinations of tensile steel and GFRP rebar were designed, constructed, and tested under progressively increasing blast loading generated using the Virginia Tech Shock Tube Research Facility. The effect of hybrid reinforcing on the blast performance of the beams was evaluated based on the global response, failure mode, damage pattern, mid-span displacement, and support reactions of the tested beams. The results demonstrated several benefits in using hybrid arrangements of steel and GFRP reinforcement. Beams with hybrid reinforcing experienced reduced overall residual displacements compared with similar conventionally reinforced concrete members. This was attributed to the elastic nature of GFRP rebar which was found to produce a self-centering behavior that assisted in returning the hybrid members to their original undeformed position. This permitted the hybrid beams to safely experience larger maximum displacements at substantially less damage than all-steel construction. Furthermore, if the GFRP reinforcement did rupture, the presence of steel arrested hazardous component failure and provided additional energy dissipation and redundancy. Accompanying the experimental tests was an inelastic single-degree-of-freedom analysis to predict the displacement time-history response of the beams. Reasonably good predictions of response were obtained when the advanced material models and the effects of accumulated damage due to repeated blast testing were incorporated into the analytical predictions. Finally, a series of protective design recommendations and a new proposed response limit, that describes the level of damage achieved after a blast event, were established to encourage use of hybrid GFRP/steel reinforcement in blast-resistant construction. / Master of Science / The threat of terrorist bombings and accidental industrial explosions motivate the need for new blast resistant construction techniques. Despite having a high strength-to-weight ratio and being chemically inert, fiber reinforced polymer (FRP) reinforcing bars are not currently used in blast-resistant reinforced concrete due to their brittle nature and lack of ductility. However, the innovative use of blended mixtures of FRP and steel rebar as tensile reinforcement promises to address these limitations through self-centering behavior that provides reductions in residual damage and enhancements in flexural performance. Large-scale reinforced concrete beams with different combinations of steel and GFRP rebar were designed, constructed, and tested under progressively increasing blast loads, gen-erated by the Virginia Tech Shock Tube Research Facility. The results demonstrated that beams with hybrid reinforcing experienced reduced overall residual damage in comparison with similar conventionally reinforced concrete members. Additionally, if the GFRP rebar ruptured, the presence of steel prevented a brittle failure and provided additional energy dissipation and redundancy. The inelastic single degree of freedom model developed for this investigation resulted in an adequate prediction of the load-deflection characteristics record-ed from experimental testing. To encourage the use of hybrid FRP/steel reinforcement in blast-resistant construction, a series of protective design recommendations and a proposed response limit, that describes the level of damage achieved after a given blast event, were established.
|
7 |
Blast Performance of Hollow Metal Steel DoorsKeene, Colton Levi 18 September 2019 (has links)
Recent terrorist attacks and accidental explosions have prompted increased interest in the blast resistant design of high-risk facilities, including government offices, private sector buildings, transportation terminals, sporting venues, and military facilities. Current blast resistant design standards prioritize the protection of the primary structural system, such as walls, columns, and beams, to prevent a disproportionate collapse of the entire structure. Secondary structural systems and non-structural components, such as blast resistant doors, are typically outside the focus of standard building design. Components such as blast resistant doors are designed and manufactured by private sector entities, and their details are confidential and considered proprietary business information. For this reason, scientific research on blast resistant doors is sparse and most test results are unavailable for public consumption. Nevertheless, the performance of blast doors is crucial to the survival of building occupants as they are relied upon to contain blast pressures and remain operable after a blast event to allow ingress/egress. These important roles highlight the critical need for further research and development to enhance the level of protection provided by components that are often not considered in any detail by protective design practice. This thesis presents a combined experimental and analytical research program intended to support the development of blast resistant hollow metal doors.
A total of 18 static beam-assembly tests were conducted, which consisted of the flexural four-point bending of door segments, to inform on the performance characteristics of full-sized blast resistant doors. Six tests were conducted to evaluate the effectiveness of three skin-core construction methodologies, which consisted of one epoxy and two weld attachment specifications, between door skins and their internal reinforcing structures. The remaining 12 tests were performed to evaluate the in-situ performance of hinge hardware typically installed on blast resistant door assemblies. The results of the skin-core construction tests demonstrated that closely spaced weld patterns would provide the best blast performance. The results of the hinge hardware tests demonstrated that hinges which provided a continuous load-path directly into the primary ii structural core elements of the door frame and door were ideal; furthermore, robust hinges with fully-welded or continuous knuckles were best suited for limiting undesirable deformations.
A semi-empirical analytical methodology was developed to predict the global deformation response of full-sized hollow metal doors subjected to blast loading in the seated direction. The goal was to provide practicing engineers who are competent but non-expert users of high fidelity simulations with the flexibility to conduct in-house evaluation of the blast resistance of hollow metal doors without having to conduct live explosive or simulated blast tests. A finite element analysis was first performed to compute the door resistance function. Hollow metal door construction was idealized using a bulk material sandwiched between sheet metal skins and internally stiffened by stringers. The properties of the bulk material were calibrated such that the deformability of the idealized core reasonably approximated the global load-deformation behavior which occurs due to loss of composite action when welds fail. The resistance curves were then used in a singledegree-of-freedom dynamic analysis to predict the displacement response of the door subjected to blast loading. The proposed methodology was first validated against the static beam-assembly flexural tests. It was then extended to the case of a full-sized door subjected to shock tube blast testing using results published in the literature. The proposed methodology was found to reasonably approximate the out-of-plane load-deformation response of beam-assemblies and full-size doors, provided the bulk material properties of the idealized core are calibrated against experimental data.
Finally, the new Virginia Tech Shock Tube Testing Facility was introduced. A description of the facility, including an overview of the shock tube's location, construction, main components, instrumentation, and key operating principles, were discussed. Operating guidelines and procedures were outlined to ensure safe, controlled, and repeated blast testing operations. A detailed calibration plan was proposed, and future work pertaining to the development of blast resistant hollow metal doors was presented. / Master of Science / Recent terrorist attacks and accidental explosions have motivated an increase in the demand for blast protection of critical infrastructure. Secondary components, such as doors, play a pivotal role in the protection of occupants as they ensure blast pressures are contained and ingress/egress is possible after a blast event. Experiments have been conducted to characterize the performance of several door construction methodologies (i.e., epoxy, reduced weld requirements) and the in-situ performance of hinge hardware through quasi-static testing of beams whose construction closely mimics that of a full-size door. Results of door construction testing indicated that, whenever possible, blast resistant doors should be constructed with full weld attachment (maximum specification with weld spaced every 3”) as these doors were found to provide the greatest resistance. Due to inconsistent and sudden failure mode, epoxy skin-core construction is not recommended for use in blast resistant doors at this time. Hinge testing determined that hinge mounting plates (which hinge hardware leaves are attached to) should be integrally connected to the frame and door internal reinforcing elements to provide adequate strength and that hinges with fully welded knuckles should be used for blast applications to limit deformation and facilitate post-blast operability. An ABAQUS finite element analysis methodology utilizing a “skins and stringers” approach to generate a beam-assembly model resulted in an adequate prediction of load deflection results recorded during beam-assembly testing after calibration of the model. An extension of this modeling approach was used to model full-size doors and adequately captured their dynamic performance when subjected to blast loading. Finally, preparation of the Virginia Tech Shock Tube Testing Facility, which is currently in progress, is summarized with regards to its calibration and the first round of testing which will focus on providing more data for comparison with the analysis methodology developed in this research.
|
Page generated in 0.0379 seconds