• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved theoretical prediction of nanoparticle stability and the synthesis, characterization, and application of gold nanopartticles of various morphology in surface-enhanced infrared spectroscopy

Wijenayaka, A. K. Lahiru Anuradha 01 July 2015 (has links)
The overarching objective of the investigations discussed herein is the development of a model experimental system for surface-enhanced infrared absorption (SEIRA) spectroscopy, with potential applicability in higher order infrared spectroscopic techniques, specifically, surface-enhanced two-dimensional infrared (SE-2D IR) spectroscopy. Theoretical predictions that accurately predict the stability of functionalized nanoparticles enable guided design of their properties but are often limited by the accuracy of the parameters used as model inputs. Hence, first, such parameterization limitations for the extended DLVO (xDLVO) theory are overcome using a size-dependent Hamaker constant for gold, interfacial surface potentials, and tilt angles of self-assembled monolayers (SAMs), which collectively improves the predictive power of xDLVO theory for modeling nanoparticle stability. Measurements of electrical properties of functionalized gold nanoparticles validate the predictions of xDLVO theory using these new parameterizations illustrating the potential for this approach to improve the design and control of the properties of functionalized gold nanoparticles in various applications. Next, a series of experiments were conducted to elucidate the behavior of various infrared active molecules in the presence of spherical gold nanoparticles of average diameter ∼20 nm. Here, the spectroscopic anomalies, specifically the shifted vibrational frequency and the dispersive lineshape observed in the infrared spectra for SCN- in the presence of gold nanoparticles provide direct evidence of SIERA. Nevertheless, it was evidenced that nanomaterial with plasmonic properties that extends into the infrared wavelengths are imperative in observing efficient infrared enhancements. Hence, nanomaterial indicating plasmonic properties extending into the infrared wavelengths were synthesized via a straightforward, seedless, one-pot synthesis. The gold nanostars prepared here indicated plasmonic behavior clearly extending into the near infrared, with simple plasmonic tunability via changing the buffer concentration used during synthesis. The systematic understanding achieved here in terms of theoretical prediction of nanoparticle stability, origin of infrared spectral anomalies in the presence of nanomaterials, and the preparation of infrared plasmonic material, collectively provides a resilient framework for the further investigation of surface-enhanced infrared spectroscopic techniques including SEIRA and SE-2D IR spectroscopies.

Page generated in 0.0587 seconds