• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulating Li-ion battery ageing through solid electrolyte interphase growth in graphite/NMC cells

Berglund, Anna January 2017 (has links)
Ageing mechanisms of graphite/NMC Li-ion batteries have been studied using computational methods. The purpose of the project was to investigate solid electrolyte interphase (SEI) formation and growth during cycling of the battery. The SEI layer formation was considered to be a reason for capacity fade of the battery. Irreversible consumption of cyclable Li-ions and increased resistance in the layer was considered to be the result of solid electrolyte layer formation and these two effects were studied more closely using cell modelling. The battery cycled with three cases of fast charge rates (2C, 4C and 6C) and the same discharge rate (1C) showed a thick film formation on the anode side and a higher film resistance when compared to the battery cycled with the same charge/discharge rate (1C). All investigated batteries were affected by the studied ageing mechanism, and in the case of batteries cycled with fast charge rates, the ageing was even more pronounced. The report includes a general description of Li-ion battery functionality, a summary of ageing mechanisms and a mathematical description of the electrochemistry governing the battery and implemented in the software.
2

Study Ageing in Battery Cells: From a Quantum Mechanics, Molecular Dynamics, and Macro-Scale Perspective

Lanjan, Amirmasoud January 2023 (has links)
When an anode electrode potential is larger than the lowest unoccupied molecular orbital (LUMO) of the electrolyte, Li-ions and electrolyte molecules will participate in reduction reactions on the anode surface and form a solid electrolyte interface (SEI) layer. Active Li-ion consumption in the formation reactions is the main source of capacity loss (>50) and ageing in Li-ion batteries (LIBs). Due to the fast-occurring and complex nature of the electrochemical processes, conventional experimental techniques are not a feasible approach for capturing and characterizing the SEI formation phenomenon. The lack of experimental data and consequently the absence of potential parameters for crystal structures in this layer makes molecular dynamics~(MD) simulations inapplicable to it. Also, due to the multi-component multi-layer structure of the SEI, the smallest system representing an SEI layer is too large for employing the principles of quantum mechanics~(QM), that traditionally work with much smaller system sizes. Addressing this, this thesis presents a novel computational framework for coupling QM and MD calculations to simulate a system with the size limits of MD simulations independent of the experimental data. The QM evaluates sub-atomic properties such as energy barriers against diffusion and employs seven new algorithms to estimate potential parameters as the input of the MD simulations. Then MD simulations forecast SEI's properties including density, Young's Modules, Poisson's Ratio, thermal conductivity, and diffusion coefficient mechanisms. The output of the QM and MD calculations are employed to develop two macro-scale mathematical models for predicting battery ageing and battery performance, incorporating the impact of the SEI layer in addition to the cathode, anode, and separator parts. Finally, the results obtained have been validated with respect to the experimental data in different operational conditions. / Thesis / Doctor of Philosophy (PhD) / The limited lifespan of expensive batteries is the main obstacle to electrification of the transport sector, despite its necessity for addressing the current environmental issues. Li+/electrolyte reduction on the electrode surface is responsible for more than 50% of capacity loss and the consequent ageing is a complex and fast-occurring phenomenon (few ns) that cannot be easily resolved using conventional experimental and computational techniques. This thesis presents the development of some computational frameworks and demonstrates their employment to investigate this phenomenon from a multi-scale perspective, i.e., from a few electrons to an entire battery length scale, with the operating cycles ranging from a few ps to several months, employing Quantum Mechanics, Molecular Dynamics, and Macro-Scale Modeling. The frameworks have been successfully validated with respect to experimental data from the literature and have been applied successfully to highlight the parameters that impact ageing in batteries. The findings presented in this thesis can be used as the base for further research on next-gen durable batteries with liquid and solid-state electrolytes.
3

Přírodní expandovaný a vločkový grafit jako záporná elektroda lithium-iontového článku / Expanded and Flake Natural Graphite as Negative Electrode Material in Lithium-ion Cell

Paulovics, Petr January 2018 (has links)
This diploma thesis deals with an issue of lithium-ion batteries, primarily with negative (anode) electrode materials. Natural graphite in two forms, namely flake and expanded graphite, is used in the thesis as active electrode material. It is concerned with study of their capacity and output characteristics depending on the pressing pressure and discharging current. The first part of thesis consists of theory and describes basic principles and the composition of lithium-ion batteries. Materials, their characteristics used in production and theoretical description of measurement techniques are presented then. The second part of the thesis is focused on production, assembling and measurement of the characteristics of the produced electrodes. The aim of the thesis is finding the effects of changes of pressing pressure on the capacity, stability during cycling and stability at higher loads.
4

Výzkum interkalačních vlastností elektrodových materiálů založených na přírodním grafitu / Study of intercalation properties of electrode materials based on naturla graphite

Bílek, Lukáš January 2020 (has links)
This diploma thesis deals with the issue of lithium-ion accumulators. The thesis focuses on the negative electrode of lithium-ion accumulators made of natural graphite. The first part of this thesis points to the issue of electrochemical cells. In the theoretical part the thesis deals with the SEI layer, advantages, disadvantages, characteristics, operating principle and the use of lithium-ion accumulators. The practical part focuses on the electrochemical properties of negative electrode, especially the determination of the diffusion coefficient. Thesis also deals with electrochemical impedance spectroscopy (EIS) and its use in determining the equivalent replacement circuit and calculating the diffusion coefficient.

Page generated in 0.1333 seconds