• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des mécanismes de régulation synaptique de la balance sumoylation/désumoylation / Investigating the molecular pathways driving the sumoylation/desumoylation balance in rat hippocampal synapses

Schorova, Lenka 28 March 2018 (has links)
La SUMOylation est une modification post-traductionnelle essentielle pour toutes les cellules eucaryotes. C’est un processus enzymatique qui permet la liaison covalente du polypeptide SUMO sur des résidus lysine de protéines cibles. La SUMOylation est un processus réversible sous l’action de désumoylases appelées SENP. Il est critique de maintenir un équilibre entre forme modifiée et non modifiée d’un substrat donné. En effet, la dérégulation de la balance SUMOylation/déSUMOylation a été mise en évidence dans plusieurs pathologies cérébrales. La synapse est le point de contact entre les neurones où s’effectue la communication synaptique. Ce sont des structures très denses où le processus de SUMOylation régule l’interaction et la fonction de multiples protéines. Durant ma thèse, j'ai combiné l’utilisation de l'imagerie en temps réel sur cellules vivantes avec des approches biochimiques et pharmacologiques pour identifier les mécanismes de régulation du transport de SENP1. J'ai ainsi démontré que l'activation neuronale augmente les niveaux synaptiques de SENP1. Cette augmentation synaptique résulte de la modification de la vitesse de diffusion de l’enzyme SENP1 entre les dendrites et les synapses d’une part, et d’autre part, de l’augmentation importante du temps de rétention synaptique de l’enzyme. Je rapporte également que ce mécanisme de régulation dynamique de SENP1 implique l'activation des récepteurs métabotropiques du glutamate. De plus, je suggère la participation du processus de phosphorylation dans cette régulation synapto-dendritique de SENP1 mettant ainsi en lumière un nouveau mécanisme de régulation de la balance neuronale entre SUMOylation et déSUMOylation. / Sumoylation is a vital eukaryotic posttranslational modification. Sumoylation occurs as an enzymatic cycle that conjugates SUMO proteins to target proteins. SUMO proteases (SENP) deconjugate SUMO from modified proteins and thus maintain balanced levels of SUMOylated and un-SUMOylated proteins required for physiological homeostasis. Neuronal synapses are protein-rich structures that underlie synaptic transmission and plasticity. Strong evidence exists that sumoylation occurs in synapses and regulates the function of synaptic proteins. Indeed, distortion of the SUMO balance has been linked to several pathologies of the synapse. Gaining a deeper understanding into the molecular mechanisms regulating the SUMO balance is a prerequisite to envisaging the development of novel therapies. In my PhD work, I used a combination of live-cell confocal imaging, protein biochemistry and pharmacological approaches to identify SENP1 regulatory mechanisms at synapses. I provided evidence that synaptic activation increases SENP1 protein levels at synapses. I showed that the increase in synaptic SENP1 upon synaptic activation is a result of two processes: Although (a) fewer SENP1 proteins enter into spines at low diffusion speed (b) a significant proportion of SENP1 becomes immobile and is retained in spines. I demonstrate that the regulatory mechanisms of SENP1 dynamics involve a direct activation of mGlu1/5 receptors. Moreover, I suggest that phosphorylation may play an important regulatory role in SENP1 synapto-dendritic diffusion. Altogether, I propose a novel mechanism driving for the SUMO balance at synapses.
2

Fluorescence resonance energy transfer studies of protein interactions

Martin, Sarah Friede January 2008 (has links)
This thesis presents an investigation of fluorescence resonance energy transfer (FRET) as a reporting signal for protein-protein interactions. Quantitative optical assays to measure protein binding, conjugation and deconjugation are developed and results validated by conventional biochemical techniques. The optical techniques developed provide fast, cheap, quantitative and accurate alternatives to conventional methods. Fluorescent protein fluorophores ECFP and Venus-EYFP were chosen as they are a non-interfering FRET pair and provide an inexpensive and convenient cloning-based labelling method. The small ubiquitin-like modifier SUMO and the SUMOylation pathway leading to its conjugation to target proteins is investigated as a model system. These assays are hence particularly relevant to research on post-translational modification and ubiquitin systems. In protein-protein binding assays we utilise both steady-state and time-resolved FRET detection to measure the equilibrium binding constant of the well-characterised pair SUMO1 and Ubc9. An assay in multi-well plate format is also presented, which uniquely enables repeat measurements under varying conditions and under the addition of further substances. The multi-protein binding interactions of the SUMOylation pathway including RanBP2 are analysed in binding inhibition assays. Our results clarify the role of RanBP2: a covalent SUMO1-Ubc9 link is required for the formation of a trimeric complex, although mutual binding sites are present on all three proteins. Furthermore, the binding of SUMO1 and Ubc9 is disrupted by RanBP2, which may be an essential step in transferring SUMO1 to its target protein. A FRET-based kinetic study of this conjugation process to RanGAP1 is presented. An assay to monitor the deconjugation of SUMO1 by specific proteases is established using a doubly-tagged SUMO construct. This enables a quantitative analysis of protease and substrate specificity based on real-time kinetic data, a characterisation of crude cell extracts and a high-throughput screen for protease inhibitors using FRET. A screen of the National Cancer Institute (NIC) diversity set for SenP1 inhibition reveals nine suitable compounds, which are potential anti-cancer drugs. The results of two further projects, the study of protein-protein binding by measuring small refractive index changes and the autofluorescence of normal and neoplastic cervical tissue models are also presented. In the latter, principal component analysis was used to systematically identify emission regions of significant variation between samples, enabling discrimination between healthy and pre-cancerous tissue models.

Page generated in 0.0205 seconds