• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 30
  • 18
  • 16
  • 12
  • 11
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 166
  • 107
  • 75
  • 36
  • 35
  • 33
  • 31
  • 28
  • 27
  • 27
  • 25
  • 24
  • 24
  • 23
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Sensorless Control of Permanent-Magnet Synchronous Motors Using Online Parameter Identification Based on System Identification Theory

Ichikawa, Shinji, Tomita, Mutuwo, Doki, Shinji, Okuma, Shigeru January 2006 (has links)
No description available.
62

Solving a Dead-lock Problem of NFO Sinus

Engdahl, Henrik January 2007 (has links)
This thesis presents, analyzes and suggests solutions to the dead-lock problem of the sensorless variable speed drive NFO Sinus. Friction, measurement, parameter estimation and quantization effects are believed possible origins of this problem and is hence studied. A short introduction to ¯eld oriented control of the asynchronous AC motor and the NFO Control strategy is also included. The report is published at LiTH as ISRN LiTH-ISY-EX--06/3945--SE and at LTH under ISRN LUTFD2/TFRT--5780--SE.
63

Sensorless Robust Sliding Mode Speed Control of Permanent Magnet Synchronous Motor

Hsu, Chih-hung 30 August 2010 (has links)
Sliding mode controllers (SMC) with time delay and a rotor position observer are designed for the sensorless speed control of permanent magnet synchronous motor (PMSM) are proposed in this paper. Based on field-oriented principle, a flux SMC is designed to achieve quick flux control. And then a speed SMC with time delay is presented and compared with PI controller in the direct torque control framework. The effectiveness of the proposed control scheme under the load disturbance and parameter uncertainties is verified by simulation results.
64

Design and Implementation of an Air Conditioner Adaptive Compressor Driver with Sine PWM and Current Feedback

Hung, De-Shian 27 October 2010 (has links)
This thesis uses TMS320LF2407A DSP from T.I. as the control kernel .It proposes a method of sensorless driver and variable speed driver with current feedback for the rotary compressor. By detecting the back electromotive force signals, the information of rotor position can be detected by the commutation process and the speed estimation can also be achieved. In order to make the system more robust and the improve the power consumption, adaptive controller and close loop structure are adapted. At last, the experimental system structure is built, and the advantages improvement efficiency of the system with sensorless driver¡Bspeed and current feedback were be verified by experiment.
65

Development of a Novel Linear Magnetostrictive Actuator

Sadighi, Ali 2010 August 1900 (has links)
This dissertation presents the development of a novel linear magnetostrictive actuator. The magnetostrictive material used here is Terfenol-D, an alloy of the formula Tb0.3Dy0.7Fe1.92. In response to a traveling magnetic field inside the Terfenol-D element, it moves in the opposite direction with a peristaltic motion. The proposed design offers the flexibility to operate the actuator in various configurations including local and conventional three-phase excitation. The conceptual design of the linear magnetostrictive actuator was performed during which different configurations were analyzed. Finite Element Analysis (FEA) was extensively used for magnetic circuit design and analysis in conceptual design. Eventually one of these designs was chosen based on which detailed design of linear magnetostrictive actuator was carried out. A new force transmission assembly incorporates spring washers to avoid the wear due to the sudden collision of Terfenol-D element with the force transmission assembly. All mechanical parts were then fabricated at the mechanical engineering machine shop. The power electronics to operate the motor in a local three-phase mode was designed and implemented. It was demonstrated that the power consumption can be reduced significantly by operating the magnetostrictive linear actuator in the local excitation mode. A finite-element model of the actuator was developed using ATILA and an empirical model was presented using the data gathered from numerous tests performed on the actuator. The closed-loop control system was implemented using relay control which resulted in an optimal closed-loop performance. The magnetostrictive actuator has demonstrated 410-N load capacity with a travel range of 45 mm, and the maximum speed is 9 mm/min. The maximum power consumption by the motor is 95 W. The sensorless control of the linear magnetostrictive actuator was successfully conducted using two different approaches. First, using a linear-approximation method, we achieved a position estimation capability with ±1 mm error. Then, an adaptive neuro-fuzzy inference system was employed for estimating the position which resulted in a position estimation capability with only a ±0.5 mm error.
66

DSP-Based Brushless DC Motor Novel Sensorless Drivers with Sine PWM

Tien, Chin-wen 03 February 2009 (has links)
The design and implementation of the digital signal processing (DSP) based on a brushless DC (BLDC) motor sensorless driver with Sine PWM. Because of dispensable power consumption problems generated by closed-loop speed control methods with speed estimation signal feedback are adopted for improvement. In addition, current feedback is added to the driver for the sake of increasing efficiency. Then, sine wave closes 30¢X, 15¢X, and 8¢X to comparing the improvements for efficiency. Experimental results from a laboratory prototype are shown to verify the feasibility of the proposed scheme. The laboratory results show that current feedback and sine wave closed 8¢X have high efficiency.
67

ELIMINATING THE POSITION SENSOR IN A SWITCHED RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION

Zhang, Jinhui 01 January 2005 (has links)
The switched reluctance motor (SRM) is receiving attention because of its merits: high operating temperature capability, fault tolerance, inherent shoot-through preventing inverter topology, high power density, high speed operation, and small rotor inertia. Rotor position information plays a critical role in the control of the SRM. Conventionally, separate position sensors, are used to obtain this information. Position sensors add complexity and cost to the control system and reduce its reliability and flexibility. In order to overcome the drawbacks of position sensors, this dissertation proposed and investigated a position sensorless control system that meets the needs of an electric actuator application. It is capable of working from zero to high speeds. In the control system, two different control strategies are proposed, one for low speeds and one for high speeds. Each strategy utilizes a state observer to estimate rotor position and speed and is capable of 4 quadrant operation. In the low speed strategy a Luenberger observer, which has been named the inductance profile demodulator based observer, is used where a pulse voltage is applied to the SRMs idle phases generating triangle shaped phase currents. The amplitude of the phase current is modulated by the SRMs inductance. The current is demodulated and combined with the output of a state observer to produce an error input to the observer so that the observer will track the actual SRM rotor position. The strategy can determine the SRMs rotor position at standstill and low speeds with torques up to rated torque. Another observer, named the simplified flux model based observer, is used for medium and high speeds. In this case, the flux is computed using the measured current and a simplified flux model. The difference between the computed flux and the measured flux generates an error that is input to the observer so that it will track the actual SRM rotor position. Since the speed ranges of the two control stragegies overlap, the final control system is capable of working from zero to high speed by switching between the two observers according to the estimated speed. The stability and performance of the observers are verified with simulation and experiments.
68

Self-sensing algorithms for active magnetic bearings / Andries C. Niemann

Niemann, Andries Christiaan January 2008 (has links)
Active magnetic bearings (AMBs) have become a key technology in industrial applications with a continued drive for cost reduction and an increase in reliability. AMBs require position feedback to suspend the rotor. Conventional contactless position sensors are used to measure the rotor's position. The major disadvantages of conventional position sensors are their cost and that the sensors are viewed as a weak point in an AMB system. A self-sensing sensor is a type of sensor which is cost effective, reduces sensor wire-length and increases reliability, thus ideal for the industry. This type of sensor relies on the current and voltage signals of the AMB's to obtain the rotor position. Due to the rapid and advanced development of digital electronics, it has become more powerful and cheaper, thus self-sensing in mass production will be cost effective. Different self-sensing approaches were developed in the past and can be divided into two main categories: state estimation and amplitude modulation approaches. In this research the focus will be on the amplitude modulation approach. Amplitude modulation makes use of two signals, namely the modulation signal and the carrier signal. In a self-sensing AMB system the carrier can be a high frequency component injected into the system or the switching ripple of the switch mode power amplifier can be used. The modulation signal is the change in rotor position which results in changing inductances. The actuator material introduces nonlinear effects on the estimated position. Due to these nonlinear effects, it is rather difficult to obtain the rotor position. The first industrial application of a self-sensing turbomolecular pump system was implemented in 2005 by S2M. The aim of this thesis is to evaluate existing self-sensing schemes, devise improvements and investigate possible new schemes. Four different demodulation methods and two new self-sensing schemes are evaluated. An AMB transient simulation model which includes saturation, hysteresis, eddy currents and cross-coupling is used to evaluate the schemes in simulation. The self-sensing schemes are implemented in hardware and evaluated on a 7 A rms 500 N AMB. A comparative study was done on the different self-sensing schemes. From the comparative study it was determined that the gain- and phase effects have a direct effect on the sensitivity of the system. It was also proved that self-sensing can be implemented on a coupled AMB with a sensitivity of 10.3 dB. / Thesis (Ph.D. (Electrical and Electronic Engineering))--North-West University, Potchefstroom Campus, 2009.
69

Self-sensing algorithms for active magnetic bearings / Andries C. Niemann

Niemann, Andries Christiaan January 2008 (has links)
Active magnetic bearings (AMBs) have become a key technology in industrial applications with a continued drive for cost reduction and an increase in reliability. AMBs require position feedback to suspend the rotor. Conventional contactless position sensors are used to measure the rotor's position. The major disadvantages of conventional position sensors are their cost and that the sensors are viewed as a weak point in an AMB system. A self-sensing sensor is a type of sensor which is cost effective, reduces sensor wire-length and increases reliability, thus ideal for the industry. This type of sensor relies on the current and voltage signals of the AMB's to obtain the rotor position. Due to the rapid and advanced development of digital electronics, it has become more powerful and cheaper, thus self-sensing in mass production will be cost effective. Different self-sensing approaches were developed in the past and can be divided into two main categories: state estimation and amplitude modulation approaches. In this research the focus will be on the amplitude modulation approach. Amplitude modulation makes use of two signals, namely the modulation signal and the carrier signal. In a self-sensing AMB system the carrier can be a high frequency component injected into the system or the switching ripple of the switch mode power amplifier can be used. The modulation signal is the change in rotor position which results in changing inductances. The actuator material introduces nonlinear effects on the estimated position. Due to these nonlinear effects, it is rather difficult to obtain the rotor position. The first industrial application of a self-sensing turbomolecular pump system was implemented in 2005 by S2M. The aim of this thesis is to evaluate existing self-sensing schemes, devise improvements and investigate possible new schemes. Four different demodulation methods and two new self-sensing schemes are evaluated. An AMB transient simulation model which includes saturation, hysteresis, eddy currents and cross-coupling is used to evaluate the schemes in simulation. The self-sensing schemes are implemented in hardware and evaluated on a 7 A rms 500 N AMB. A comparative study was done on the different self-sensing schemes. From the comparative study it was determined that the gain- and phase effects have a direct effect on the sensitivity of the system. It was also proved that self-sensing can be implemented on a coupled AMB with a sensitivity of 10.3 dB. / Thesis (Ph.D. (Electrical and Electronic Engineering))--North-West University, Potchefstroom Campus, 2009.
70

Bezsensorové polohové řízení solenoidu / Sensorless position control of solenoid valve

Keprt, Jaroslav Unknown Date (has links)
This thesis deals with the determination of the position of the solenoid core in real time based on the measured current. The reference position of the current is used for feedback control of the solenoid. For this issue, software tool Matlab/Simulink was used. For current and temperature measurements, PCB circuits were created. The whole project was carried out on the dSPACE platform.

Page generated in 0.0135 seconds