• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural studies of MenD : a crystallographic endeavor

Toogood, Ronald Daniel 15 April 2009
The thesis presented here describes the steps that were taken in an attempt to solve the protein structure of MenD via molecular replacement and multiple wavelength anomalous dispersion. The introduction provides background on menaquinone biosynthesis and the role of MenD in this metabolic pathway. Also, a detailed discussion of the DC Family of enzymes, a subgroup of ThDP dependent enzymes, which MenD is a part of, is included.<p> Utilizing various software packages a 1.9 Å data set was processed and analyzed in an attempt to provide a molecular replacement result. When molecular replacement was deemed incapable of solving the phase problem of the data set, the production of SeMet protein was attempted to allow for MAD phasing.<p> A homology model of MenD was produced using the program Modeller with benzaldehyde lyase as a template. A structure based sequence alignment was done with all DC Family enzymes with structures published. Then a second structure based sequence alignment was done to compare the same set to the Modeller model. This was done to gain a deeper understanding of MenD and how it interacts with its cofactors ThDP and Mg2+. Furthermore, these results were used to implicate potential active site residues.
2

Structural studies of MenD : a crystallographic endeavor

Toogood, Ronald Daniel 15 April 2009 (has links)
The thesis presented here describes the steps that were taken in an attempt to solve the protein structure of MenD via molecular replacement and multiple wavelength anomalous dispersion. The introduction provides background on menaquinone biosynthesis and the role of MenD in this metabolic pathway. Also, a detailed discussion of the DC Family of enzymes, a subgroup of ThDP dependent enzymes, which MenD is a part of, is included.<p> Utilizing various software packages a 1.9 Å data set was processed and analyzed in an attempt to provide a molecular replacement result. When molecular replacement was deemed incapable of solving the phase problem of the data set, the production of SeMet protein was attempted to allow for MAD phasing.<p> A homology model of MenD was produced using the program Modeller with benzaldehyde lyase as a template. A structure based sequence alignment was done with all DC Family enzymes with structures published. Then a second structure based sequence alignment was done to compare the same set to the Modeller model. This was done to gain a deeper understanding of MenD and how it interacts with its cofactors ThDP and Mg2+. Furthermore, these results were used to implicate potential active site residues.

Page generated in 0.019 seconds