• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 546
  • 137
  • 63
  • 35
  • 26
  • 18
  • 15
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1047
  • 180
  • 153
  • 134
  • 112
  • 103
  • 101
  • 92
  • 78
  • 77
  • 74
  • 67
  • 59
  • 56
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Central serotonergic modulation of heart rate in Aplysia Californica

Fulton, Rita January 1998 (has links)
No description available.
252

Serotonergic Antagonists Affect the Activity of Breast Tumor Initiating Cells in Human and Mouse Models of Breast Cancer / ON SEROTONERGIC SIGNALING AND BREAST TUMOR INITIATING CELLS

Gwynne, William D. January 2019 (has links)
DOCTOR OF PHILOSOPHY (2019) McMaster University, Hamilton, Ontario (Medical Sciences) TITLE: Serotonergic antagonists affect the activity of breast tumor initiating cells in human and mouse models of breast cancer. AUTHOR: William D. Gwynne, BSc SUPERVISOR: Dr. John A. Hassell NUMBER OF PAGES: XXI; 255 / Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related death amongst women worldwide. The relatively unchanging breast cancer-associated mortality rate is in part due to the existence of rare tumor cells (breast tumor initiating cells; BTIC) that possess stem-like properties permitting them to survive therapy and initiate disease recurrence. Hence, identifying agents capable of eradicating these cells would be a favourable therapeutic strategy to improve the durability of breast cancer remissions. To achieve the latter objective our lab screened over 35,000 small molecules for their capacity to inhibit the viability of BTIC-enriched mouse tumor cells. Unexpectedly, several antagonists of the serotonin (5-hydroxytryptamine; 5-HT) transporter and select receptors were among the hit compounds identified in the screen. This thesis aims to establish a connection between serotonergic activity and BTIC. We accomplished the latter by assessing whether components of the 5-HT signaling system are expressed in mouse and human breast tumor cells and whether inhibition of their activity affects BTIC frequency using multiple orthogonal assays. Our data suggest that breast tumor cells of both mouse and human origin express the components necessary for 5-HT synthesis, activity and metabolism and that inhibition of these proteins with selective antagonists reduces the capacity of these cells to form tumorspheres. We demonstrate that highly selective antagonists of SERT and HTR5A target BTIC as established ex vivo cell transplantation assays. We also discovered that these agents synergize with chemotherapy in vivo to affect the growth of mouse breast tumor allografts and human breast tumor xenografts. To validate the molecular targets of these agents, we attempted to phenocopy their effects in functional assays by knocking out their respective genes using CRISPR-Cas9 technology. Collectively, this thesis contributes to an understanding of how 5-HT signaling affects BTIC and identifies serotonergic antagonists as novel anticancer agents. / Dissertation / Doctor of Philosophy (PhD) / Despite improvements in screening technologies and the development of targeted therapies breast cancer remains the second leading cause of cancer-related death among Canadian women. Whereas the current standard of care is effective at treating the majority of patients diagnosed with breast cancer, there remains a substantial proportion of patients that experience relapse after undergoing therapy. Recurrence is due in part to the existence of rare, stem-like tumor cells, termed breast tumor-initiating cells (BTIC) that are insensitive to existing anticancer agents. Hence, identifying drugs capable of targeting these cells is a desirable goal. To pursue the latter, our lab screened approximately 35,000 compounds for their capacity to affect the growth of BTIC-enriched tumor cell populations. Among the hit compounds were antagonists of the serotonin transporter and serotonin receptors, including FDA-approved psychiatric medications. Here, we explore a connection between serotonin-related proteins and BTIC activity with the aim of identifying novel therapeutic agents.
253

The Effects of Elevated Serotonin (5-HT) Signaling on Brown Adipose Tissue

Green, Alexander E January 2020 (has links)
Inhibiting peripheral serotonin (5-HT) synthesis has been shown to prevent the development of diet-induced obesity, glucose intolerance, insulin resistance and hepatic lipid deposition and to increase brown adipose tissue (BAT) thermogenic capacity. This thesis investigated 1) what effects 5-HT has on brown adipocytes (BAs), 2) if 5-HT and/or selective serotonin reuptake inhibitors (SSRIs) impair BAT function, 3) if 5-HT directly inhibits BA via a receptor-mediated mechanism, 4) which 5-HT receptor is predominantly expressed in BAT, 5) if 5-HT receptor antagonism improves BAT function and 6) if 5-HT receptor inhibition reduces SSRI induced weight gain. In murine BAs, 5-HT at concentrations ≥100 μM acutely reduced lipolysis, lipid accumulation and glycolytic flux but did not impair oxygen consumption; whereas 10 nM 5-HT reduced Ucp1 promoter activity via an extracellular receptor-mediated mechanism. Acute injection of 5-HT or the selective serotonin reuptake inhibitor (SSRI) Paroxetine decreased BA T thermogenic capacity and energy expenditure (EE), respectively. Mice lacking the serotonin transporter gene (Slc6a4-/- mice) had increased adiposity, decreased locomotor activity and increased food intake. However, male Slc6a4-/- mice had increased BAT thermogenic capacity, in contrast to the reduced EE expenditure following acute administration of Paroxetine. Using, RNA-Seq analysis and measurements of canonical 5-HT receptor second messengers (i.e. Ca2+ and cAMP transients), 5-HT2A was identified as the highest expressed 5-HT receptor in murine and human BAs and the only detected active 5-HT receptor in murine BAs. Genetic elimination of 5-HT2A prevented 5-HT induced increases in Ca2+ transient peaks and decreases in Ppargc1a mRNA expression in cultured BAs. In vivo ablation of 5-HT2A in adipose tissue increased BAT thermogenic capacity. Furthermore, in silico analyses predicted that pharmacological inhibition of 5- HT2A would induce a thermogenic program. In vitro, 5-HT2A receptor antagonists eliminated 5-HT induced Ca2+ transients and in vivo, a single injection of a peripherally-restricted 5-HT2A antagonist (Xylamidine) prevented 5-HT-induced impairments in BAT-mediated EE. Chronic administration of Xylamidine to chow- fed mice for 5-weeks improved BA T thermogenesis. Co-administration of Xylamidine with Paroxetine, however, did not attenuate Paroxetine-induced weight gain but did improve BAT functional capacity Therefore, 5-HT2A antagonism improves BAT thermogenic capacity but does not increase EE. This represents a novel therapeutic approach for increasing thermogenic capacity that may be used in conjunction with BAT activating strategies to increase EE and attenuate obesity. / Thesis / Doctor of Philosophy (PhD) / Obesity is a growing global pandemic caused by excessive energy intake over energy expenditure (EE). Some medications, such as certain selective serotonin (5-HT) reuptake inhibitor (SSRI) type antidepressants, also contribute to weight gain via reasons which are not fully understood. Currently available weight- loss medications decrease energy intake but do not affect EE. Recently, inhibiting the production of 5-HT outside the brain decreased weight gain in a model of obesity. Furthermore, this was associated with an improvement in the activity of a specialized type of adipose tissue, called brown adipose tissue (BAT). BAT is capable of expending energy in the form of thermogenesis and thus when active increases energy expenditure. We hypothesized that 5-HT impairs BAT activity and that blocking 5-HT activity may reduce weight gain in a model of antidepressant- induced weight gain. Herein, we investigated whether elevating 5-HT or increasing 5-HT downstream signaling modified BAT activity, which 5-HT receptor(s) is/are predominantly expressed in brown adipocytes (BAs), and what the effect on BAT would be if this/these receptors were eliminated. We found that in cell culture “supraphysiological” doses of 5-HT acutely impaired BA lipid mobilization and glucose metabolism; whereas, circulating concentrations of 5-HT impaired expression of select mitochondrial genes when serotonin transport was reduced. In mice, acute injections of high dose 5-HT attenuated BAT activity in response to an adrenergic stimulus. Acute treatment with an SSRI decreased EE and locomotor activity. Mice genetically lacking the serotonin transporter (the target of SSRIs) had increased weight gain (particularly fat mass), increased food intake and reduced locomotor activity, but improved BAT functional capacity. We subsequently identified that the predominantly expressed and active receptor in BAs was the 5- HT2A receptor. Genetically eliminating the 5-HT2A receptor in BAs prevented 5- HT’s reduction of a major mitochondrial gene expression regulator and improved BAT functional capacity in mice. Inhibiting 5-HT2A with a 5-HT2A brain impermeable antagonist, Xylamidine, increased BAT functional capacity in mice. Treating mice with Paroxetine (Paxil®), a SSRI known to increase weight gain, and Xylamidine did not attenuate Paroxetine-induced weight gain nor increase EE but did improve BAT functional capacity. In conclusion, we found that 1) chronic treatment with physiological levels of 5-HT impaired BAT functional capacity, 2) elimination/inhibition of adipocyte 5-HT2A improved BAT functional capacity in vivo and 3) inhibiting peripheral 5-HT2A alone did not attenuate Paroxetine- induced weight gain.
254

Neurodevelopmental and Behavioral Consequences of Serotonin System Disruption via Early Life Exposure to SSRI Antidepressants

Unroe, Keaton Andrew 26 August 2022 (has links)
Selective serotonin reuptake inhibitor (SSRI) antidepressants are widely prescribed to pregnant women suffering with depression, although the long-term impact of these medications on exposed offspring are poorly understood. Perinatal SSRI exposure alters human offspring's neurodevelopment and increases risk for psychiatric illness in later life. Rodent studies suggest that perinatal SSRI-induced behavioral abnormalities are driven by changes in the serotonin system as well as epigenetic and transcriptomic changes in the developing hippocampus. Studies in humans and experimental animal models shows that perinatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants can lead to abnormal emotional behaviors in adulthood, with a majority of the studies focusing on male offspring behavior. In this dissertation, we assessed whether SSRI-induced neurobiological and behavior changes occur in both sexes and whether these changes emerge in the juvenile period. In addition, we observed gene expression changes in the hippocampus related to metabolism and synaptogenesis. Given that, we hypothesized that the behavioral impacts following SSRI exposure may be driven, in part, by these processes. Juvenile offspring exposed to SSRIs in early life, regardless of sex, displayed increased anxiety-like behavior and altered social play. In adulthood, perinatal SSRI-exposed male and female offspring displayed increased passive coping in the Forced Swim Test but showed no differences in anxiety-like behavior. In addition to emotional behaviors, dams with a history of early-life SSRI exposure exhibited decreased maternal care, including diminished arched-back nursing, reduced licking and grooming of pups, and increased behavioral inconsistency. Alongside these behavioral changes, during infancy, we observed increased metabolic activity in the dentate gyrus of the hippocampus and decreased activity in the basolateral amygdala. During adulthood, the CA and dentate gyrus of the hippocampus in both sexes and the paraventricular nucleus of the hypothalamus in female offspring were more metabolically active in exposed offspring. We also observed differences in inter-correlations of limbic region COX activity in perinatal SSRI exposed and control offspring. Finally, a major gene altered by perinatal SSRI exposure is the G-protein coupled receptor Brain Angiogenesis Inhibitor 3 (BAI3). As a G-protein coupled receptor (GPCR), it is an interesting potential therapeutic target, since most recently approved drugs in the central nervous system act on GPCRs. Data present here show that perinatal exposure to the SSRI citalopram increases mRNA expression of Bai3 and related molecules (including its C1ql ligands) in the early postnatal dentate gyrus of male and female offspring. Transient Bai3 mRNA knockdown in perinatal SSRI-exposed dentate gyrus lessened behavioral consequences of perinatal SSRI exposure, leading to increased active stress coping. To determine translational implications of this work, we examined expression of BAI3 and related molecules in hippocampus and prefrontal cortex from patients that suffered with depression or schizophrenia relative to healthy control subjects. We found sex- and region-specific changes in mRNA expression of BAI3 and its ligands C1QL2 and C1QL3 in men and women with a history of psychiatric disorders compared to healthy controls. Together, these results suggest that abnormal BAI3 signaling may contribute to molecular mechanisms and metabolic changes that drive adverse effects of perinatal SSRI exposure and show evidence for alterations of BAI3 signaling in the hippocampus of patients that suffer depression and schizophrenia. Therefore, these data suggest that investigate the Bai3 network may be an exciting route as a potential therapeutic target for depression. / Doctor of Philosophy / Environmental factors during development play an important role in shaping the growth, structure, and function of the brain and as well behavior of an organism. Some of these factors that alter development which can negatively impact behavior include early life exposure to stress, toxins, or drugs. In this dissertation, we will discuss the impact of early life exposure to antidepressants. Many people take selective serotonin reuptake inhibitor (SSRI) antidepressants as a way to treat their depression during pregnancy. It is important to note that is it essential to treat depression during pregnancy, since depression can drastically impact the behavior of the offspring. However, while considering this, it is also critical to understand how exposure to SSRI antidepressants influences behavior of the offspring. SSRI antidepressants work by increasing the neurotransmitter serotonin in the brain and body. Previous work has demonstrated that early life exposure to SSRIs can alter the way the serotonin system develops in the brain and also increases the chance of children to develop emotional disorders (e.g., depression and anxiety). The same is true in rodents, a model organism in research, since we see an increase in depression-related behavior in our rats that are exposed to SSRI antidepressants in early life. Data shown in this dissertation support this claim, as we see altered behavior not only in adult but juvenile male and female rodent offspring. In adults, we found increased depression-related behavior and social deficits (e.g., maternal care). In the juvenile offspring, we saw alterations of social play behaviors and increase in anxiety-related behavior. Given this observation, we were interested in determining what occurs in the brain that alters these emotional and social behavior. To do this, we observed gene changes in the brain following early life SSRI exposure. We found changes in genes related to metabolic activity and communication between neurons (i.e., synaptogenesis). As a follow up to this study, we next wanted to characterize the metabolic and morphological (i.e., structural) changes that as a result of early life SSRI exposure. We found increased activity in several regions of the brain associated with emotion, including the hippocampus, amygdala, and hypothalamus. In addition, we did not find any morphological changes in the hippocampus, although ongoing studies will continue to analyze other brain regions. Lastly, when considering specific pathways whereby early life SSRI exposure can alter emotional and social behavior, we are interested in identifying potential therapeutic targets. One set of proteins (G-coupled protein receptors; GPCRs) are interesting targets to investigate, since most FDA approved medications in the central nervous system target these GPCRs. Interestingly, one GPCR stood out in our gene studies: Bai3. In this dissertation, we present data to show that the Bai3 network is altered in rodents exposed to SSRIs in early life. In addition, we show that manipulating Bai3 in early life can help to improve depression-related behavior. Lastly, to understand if Bai3 could play a role in depression, we assessed human postmortem samples to see if Bai3 alterations occur in the depressed human condition. In this study, we found increased Bai3 levels in human male sample relative to healthy patients. Overall, the work presented here shows that early life SSRI exposure negatively impacts emotional and social behaviors in rodents. Coinciding with these behavior changes, we find differences in gene expression and metabolic activity, thus providing us with a potential mechanism whereby early life SSRI exposure influences behavior. It is possible that by manipulating these aspects of brain function represent fruitful options for therapeutic targets for depression and other mood disorders.
255

Serotonin, Norepinephrine, and the Hypothalamic Ventromedial Nucleus: a Proposed Mechanism Mediating Hyperphagia and Obesity

McDermott, Kathy Howard 05 1900 (has links)
Serotonin has been implicated as a modulator of feeding behavior. This experiment was designed to alter brain serotonin levels through dietary means in hypothalamic ventromedial-lesioned and unlesioned rats. Daily food, water, and animal weights were measured. The purpose was to determine if VMH lesions altered the feeding pattern found in unlesioned rats. Although food intake for tryptophanenriched diets and tryptophan-deficient diets did not differ from their respective control groups, in some cases gross animal weights did differ significantly between experimental and control groups and between lesioned and unlesioned groups. A proposed model explains how a "low" energy signal and a "high" protein signal cycles amino acids through gluconeogenesis to comPensate for an energy deficit.
256

Managing prescribing habits amongst private psychiatrists in South Africa

13 August 2012 (has links)
M. Comm. / Psychiatrists are medical doctors who have specialised in the field of Psychiatry. Psychiatry is one of the five major fields in medicine, the other fields being Surgery, Obstetrics and Gynaecology, Internal Medicine and Paediatrics. Psychiatrists treat psychiatric disorders by way of diagnosis and invariably the prescription of the appropriate medication. Sixty to seventy percent of the diagnoses made by psychiatrists in private practice involve the so-called mood disorders in which a depressed mood is a common occurence. Depression is mostly treated with anti-depressant medication. (Olfson and Klerman , 1993:572). Accumulating evidence suggests that the use of anti-depressant medications is increasing. Sclar et. al. examined data from the National Ambulatory Medical Care Survey for the period 1990 through 1995. American National estimates of the number of office-based visits resulting in a prescription for or continuation of anti-depressant pharmacotherapy for any purpose escalated from 16 534 268 in 1990 to 28 664 796 in 1995, a 73,4% increase. (Sclar, Robinson, Skaer, Galin.1998:870) .although a Medline search cannot produce more recent figures it is commonly accepted that the most widely prescribed anti-depressants today fall in the class known as the SSRI's which stands for selective serotonin reuptake inhibitors. Use of a SSRI for the treatment of depression increased from 37.1% in 1990 to 64.6% in 1995. The first SSRI medication to become available on the South African market was fluoxetine under the trade name of Prozac in late 1987. (Preskorn, 1996: 18). To date approximately 25 million people have used Prozac worldwide. Prozac and other newer anti-depressants have been the topic of lead articles in national news magazines, best-selling books and widely watched television talk shows.
257

Die Wirkung des 5-HT 1A-Agonisten 8-OH-DPAT auf die Serotoninfreisetzung im lateralen Hypothalamus und des Fressverhalten der Ratte

Kienzle, Frederike Bianca 15 July 2002 (has links)
Serotonin (5-HT) nimmt eine wichtige Rolle in der Regulation von Nahrungsaufnahme ein. Erhöhte 5-HT-Freisetzung hemmt die Nahrungsaufnahme. Der 5-HT1A-Rezeptor liegt sowohl somatodendritisch als auch postsynaptisch vor. Seine Stimulation mit 8-OH-DPAT vermindert die 5-HT-Freisetzung. Die in-vivo-Mikrodialyse ermöglichte uns eine kontinuierliche Messung von extrazellulärem 5-HT im lateralen Hypothalamus an der frei beweglichen Ratte. Unsere Ergebnisse zeigen einen Abfall der 5-HT-Freisetzung bei satten Ratten, nicht jedoch wenn diesen nach Substanzgabe Futter angeboten wurde. Bei hungrigen Ratten war nach Substanzgabe keine signifikante Veränderung in der 5-HT-Freisetzung zu messen. Zusammenfassend wird mit der vorliegenden Studie erstmals die Wirkung von 8-OH-DPAT auf die 5-HT-Freisetzung im LHA in Abhängigkeit von unterschiedlichen Motivationszuständen in Verbindung mit Nahrungsaufnahme gezeigt. / Serotonin (5-HT) is an important mediator of satiety. Increase of 5-HT release inhibits food intake. 8-OH-DPAT, an agonist at the somatodendritic 5-HT1A autoreceptor, reduces serotonergic activity and induces food intake. With the technique of in vivo microdialysis we were able to measure continuously extracellular 5-HT in the lateral hypothalamic area (LHA) in freely moving rats under different feeding conditions. The present results show a decrease of 5-HT release in freely feeding rats after administration of 8-OH-DPAT. This effect was not obtained when offering food after drug application. In contrast, no significant effect in 5-HT release after application of 8-OH-DPAT in food deprived rats was measured. In summery this study demonstrates the effect of 8-OH-DPAT on the 5-HT release in LHA of freely moving rat depending on the different feeding conditions.
258

mechanistic study of 5-hydroxytryptamine-induced hydrogen peroxide generation in human umbilical vein endothelial cells: 五羟色胺诱导的过氧化氢产生在人脐静脉内皮细胞中的作用机理. / 五羟色胺诱导的过氧化氢产生在人脐静脉内皮细胞中的作用机理 / A mechanistic study of 5-hydroxytryptamine-induced hydrogen peroxide generation in human umbilical vein endothelial cells: Wu qian se e you dao de guo yang hua qing chan sheng zai ren qi jing mai nei pi xi bao zhong de zuo yong ji li. / Wu qian se e you dao de guo yang hua qing chan sheng zai ren qi jing mai nei pi xi bao zhong de zuo yong ji li

January 2013 (has links)
5‐羟色胺(5-HT)是一种强有力的血管活性神经递质,被广泛的应用在调节血管张力。当5‐HT 被释放后,会被单胺氧化酶(MAOs)催化的酶促反应代谢,从而产生不同的代谢产物,比如5‐HIAA,5‐HTOL 和过氧化氢(H₂O₂)。然而,5‐HT对于内皮细胞活性氧物种(ROS)的产生作用以及5‐HT 转运体,5‐HT 受体,MAOs和ROS 的产生伴随着细胞内钙变化是否参与了其中的信号传导尚未被阐明。所以,这个研究最初的目的是考查外源性加入的5‐HT 对于脐静脉内皮细胞中ROS产生的影响以及其潜在的生物机理。 / 数据清楚的显示在没有L‐NAME(一种抑制一氧化氮(NO)产生的抑制剂)预处理的情况下,5‐HT 并不能在脐静脉内皮细胞内产生显著性的ROS。然而,在L‐NAME 预处理的情况下,NO 的产生被完全抑制,我们观察到明显的显著性的线粒体内的ROS 产生。5‐HT 产生的线粒体ROS 可以被clorgyline(一种MAO‐A 抑制剂),indatraline(一种5‐HT 转运体阻断剂),LY272015(一种5‐HT‐2B 受体拮抗剂),ketanserin(一种5‐HT2A 受体拮抗剂),XeC(一种IP3 受体拮抗剂),Gd³⁺(一种非选择性TRP 通道阻断剂),BAPTA(一种强效钙离子螯合剂),PEG‐Catalase,U73122(一种选择性PLC 抑制剂)以及没有钙离子的培养基所阻止。同时,5‐HT介导的胞内钙离子变化被XeC, Gd³⁺, BAPTA, U73122, ketanserin, LY272015 以及没有钙离子的培养基所阻止。另外,MAO‐A 基因敲除抑制了5‐HT 导致的线粒体ROS的产生却对5‐HT 介导的胞内钙离子变化没有影响。基于以上所述的结果,我们可以得出结论,通过5‐HT 转运体,5‐HT 被摄取入细胞内,然后通过MAO‐A 介导的酶促代谢反应,产生钙离子依赖性的线粒体内ROS 的产生,这一结论对于解释血小板聚集而引起的内皮细胞功能性障碍起到非常重要的作用。 / 根据前人所述,内皮细胞内产生的ROS 对于内皮细胞通透性变化有着重要的作用,但是5‐HT 诱导的脐静脉内皮细胞ROS 的增加是否会对内皮通透性有所影响并没有被说明。在这项研究中,我们设计了实验旨在测试平面细胞表面积( PCSA ), 跨内皮电阻( TER ), 细胞高度, 肌球蛋白轻链磷酸化(MLCphosphorylation)和肌动蛋白细胞骨架(F‐actin cytoskeleton)水平的变化。此外,b‐catenin 在ROS 引起的F‐actin cytoskeleton 重组中的作用也在我们的讨论范围之内。 / 数据表明,在L‐NAME 预处理的情况下,5-HT 降低了脐静脉内皮的PCSA,TER 以及细胞高度,却增加了MLCP 和与b‐catenin 表达负相关的F‐actincytoskeleton 的水平。这些作用明显被PEG‐Catalase 预处理和MAO‐A 基因敲除减弱,证明了5‐HT 通过MAO‐A 介导产生的H₂O₂ 可以增加内皮细胞的通透性。 / 据文献报道,不论内源性还是外源性的低浓度的H₂O₂ 都可以激活导致血管生成的信号通路。文献进一步表明5‐HT 可以通过特定的5‐HT 受体亚型促进各种类型的内皮细胞的血管生成。然而,5‐HT 诱导的H₂O₂ 对于脐静脉内皮的血管生成作用并没有被报道。我们通过最初的实验先验证5‐HT 对于内皮细胞增殖和迁移的影响,然后我们才去验证H₂O₂ 在其中的作用及其潜在的机理。 / 实验结果表明,在L‐NAME 预处理的情况下,不论是急性(30 分钟)还是慢性(24 小时)的5‐HT 的处理都可以导致脐静脉内皮细胞的迁移,而这个作用会被5‐HT‐2 受体拮抗剂ketanserin,LY272015,ROS 清除剂PEG‐Catalase 以及PI3K的抑制剂wortmannin 所抑制。同时,在L‐NAME 预处理下,5‐HT 增加了cortactin,p‐Akt 和 p‐eNOS 的蛋白表达量而并没有影响Akt, eNOS 和p‐cortactin 的蛋白表达量。而5‐HT 增加的p‐Akt 和p‐eNOS 的蛋白表达被wortmannin 和PEG‐Catalase所抑制。不论是在Cyuant 细胞增殖检测还是在BrdU 细胞增殖检测中,5‐HT 诱导了一种非显著性的DNA 合成的增加,并且再BrdU 细胞增殖检测中,增加了的DNA 合成被PEG‐Catalase 显著性降低。总结以上实验结果,我们可以得出结论,通过一种5‐HT‐2 受体介导的PI3K 依赖性通路,而不是cortactin 磷酸化依赖性的信号通,路5‐HT 可以引导内皮细胞迁移。 / 除此之外,ROS 也被印证可以加剧内皮细胞的炎症反应和加速内皮细胞的老化。因此,我们也观察了5‐HT 对于粘附蛋白比如ICAM‐1 和VCAM‐1 以及抗老化因子SIRT‐1 的表达是否有影响。数据表明,在L‐NAME 预处理的情况下,30 分钟的5‐HT 处理显著的增加了ICAM‐1,SIRT‐1 而不是VCAM‐1 的表达。同时,这些作用均可以被PEG‐Catalase 所抑制表明了5‐HT 通过诱导H₂O₂ 的产生来形式其促进炎症反应和抗衰老的作用。 / 最后,总结以上,通过抑制NO 的产生,5‐HT 可以通过MAO‐A 介导的酶促代谢反应在人体脐静脉内皮细胞线粒体诱导ROS 的产生。同时,5‐HT 诱导的H₂O₂参与了改变内皮细胞通透性,促进血管生成(内皮迁移)及炎症反应的过程。 / 5-Hydroxytryptamine (5-HT), a potent vasoactive neurotransmitter, is involved in the regulation of vascular tone. After its release, 5-HT is terminated at the nerve terminals via enzymatic metabolism catalyzed by monoamine oxidases (MAOs), resulting in the generation of different metabolites (e.g. 5-HIAA, 5-HTOL and H₂O₂). Our lab demonstrates for the first time that 5-HT-induced ROS production indeed occurs and therefore, the aim of this study is to investigate exogenously added 5-HT on ROS generation in human umbilical vein endothelial cells (HUVECs), in order to understand the mechanisms involved in 5-HT-induced ROS production. / Our results clearly demonstrated that in the absence of L-NAME(a NO production inhibitor), there wasno apparent ROS production induced by 5-HT. However, after the inhibition of NO synthesis by L-NAME, 5-HT caused a significant increase in mitochondrial H₂O₂ production. The 5-HT-induced mitochondrial H₂O₂ generation was sensitive to clorgyline (a MAO-A inhibitor), indatraline (a 5-HT transporter blocker), LY272015 (a 5-HT2B antagonist) and ketanserin (a 5-HT2A antagonist), Xextospongin C(XeC,a IP3 receptor antagonist), Gd³⁺ (a non-selective TRP channel blocker), BAPTA (a potent Ca²⁺ ions chelator), PEG-Catalase, U73122 (a selective PLC inhibitor), and in [Ca²⁺]o-free medium. Concurrently, 5-HT-mediated [Ca²⁺]i changes were sensitive to XeC, Gd³⁺, BAPTA, U73122, ketanserin, LY272015, and in [Ca²⁺]o-free conditions. In addition, gene knockdown of MAO-A suppressed 5-HT-elicited H₂O₂ production with no effects on [Ca²⁺]i changes. Based on all the results above, we can conclude that 5-HT caused a Ca²⁺-dependent mitochondrial H₂O₂ generation via MAO-A-mediated metabolism with the pre-requisite uptake of 5-HT into HUVECs through 5-HT transporter. / ROS derived from endothelial cells have been implicated in changes in endothelial permeability, but whether 5-HT-induced H₂O₂ generation could alter endothelial cells permeability has as yet not been demonstrated. Here, we measured the planar cell surface area (PCSA), transendothelial electrical resistance (TER), cell height, myosin light chain phosphorylation and F-actin cytoskeleton level in response to 5-HT challenge to investigate the change of endothelial permeability. Moreover, the participation of β-catenin in regulation of F-actin cytoskeleton remodeling in ROS-modulated alteration in endothelial permeability was also investigated. Results indicated that in the presence of L-NAME, 5-HT reduced the PCSA, TER and cell height in HUVECs. In contrast, 5-HT (with L-NAME) increased myosin light chain phosphorylation (MLCP) expression and F-actin cytoskeleton level, which are negatively associated with β-catenin expression. All of these effects were ameliorated by pre-treatment of PEG-Catalase or gene knockdown of MAO-A, implying 5-HT can consistently elicit the increase in endothelial permeability via MAO-A mediated H₂O₂ generation. / Low dose of ROS from exogenous or endogenous source can activate signaling pathway that lead to angiogenesis.5-HT can promote endothelial angiogenesis through specific 5-HT receptor subtype in various endothelial cell types, but the concomitant ROS generation had not previously been indicated to play a role in the process. In this study, we seek to test out the effects of 5-HT on endothelial cells migration, and should there be a functional role for ROS in the process. / Our results revealed that in the presence of L-NAME, both acute (30 min) and chronic (24 hr) treatment of 5-HT caused HUVECs migration, the effects of which were reversed by pre-incubation of 5-HT-2 receptor antagonists, ketanserin, LY272015, ROS scavenger PEG-Catalase or selective PI3K inhibitor wortmannin. With L-NAME, 5-HT consistently increased cortactin, p-Akt and p-eNOS expression without affecting total Akt, eNOS and p-cortactin protein expression whereas the increased p-Akt and p-eNOS expression are suppressed by pre-treatment of wortmanin or PEG-Catalase. Both in Cyuant cell proliferation assay and BrdU assay, 5-HT caused a trend but non-significant increase in DNA synthesis whereas the pre-treatment of PEG-Catalase significantly suppressed cell proliferation in the BrdU assay. Based on these results, we can conclude that 5-HT elicits endothelial migration via 5-HT-2 receptor-mediated H₂O₂ generation in a PI3K-dependent pathway. Under this circumstance, cortactin phosphorylation-dependent pathway was excluded. / Besides, ROS is notorious for effects like aggravation of inflammation and acceleration aging processes. The investigation extends to looking at alterations ofexpression of adhesion protein including ICAM-1 and VCAM-1 in the inflammatory response pathway and also to looking at the major aging parameter SIRT-1 in the presence of 5-HT in endothelium. Our data showed that in the presence of L-NAME, 30 min treatment of 5-HT significantly increased ICAM-1 and SIRT-1 expression without altering VCAM-1 expression and the up-regulation of ICAM-1 and SIRT-1 expression was prevented by PEG-Catalase. / In conclusion, with the eradication of the influence of NO, 5-HT induced mitochondrial H₂O₂ production via MAO-A-mediated metabolism in HUVECs. At the same time, 5-HT-induced H₂O₂ generation was involved in increasing endothelial permeability, inflammation and angiogenesis (cell migration). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Zhang, Qian. / Thesis (Ph.D.) Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 326-450). / Abstracts also in Chinese. / Zhang, Qian.
259

Protective Actions of Luminally Restricted 5-HT4 Receptor Agonist in Dextran Sodium Sulfate Induced Colitis

LINTON, ALISHA Anne 01 January 2018 (has links)
Background: The 5-hydroxytrptamine receptor 4 (5-HT4 receptor) is heavily expressed on colonic epithelial cells and has been targeted as a therapeutic for functional bowel symptoms and pain; however, adverse cardiac events related to 5-HT4 agonist treatment limited their therapeutic use. Previous studies in the Mawe laboratory have demonstrated that intraluminal application of a 5-HT4 agonist exerts protective epithelial actions in animal models of colitis, and accelerates recovery from colitis. The aim of this study was to test the effects of a luminally restricted 5-HT4 agonist in a mouse model of experimental colitis. Methods: The luminally restricted 5-HT4 agonist (Takeda Pharmaceuticals; 10 mg/kg) was administered to mice during active dextran sodium sulfate (DSS) induced colitis. Colitis activity was evaluated using disease activity index, a fecal lipocalin-2 assay, and histological damage scoring. Epithelial proliferation and colonic motility were also measured as readouts of the potential protective actions and colonic function, respectively. Results: Oral gavage and intracolonic delivery of this luminally restricted 5-HT4 agonist had no detectable effect on recovery from colitis or colonic motility as compared to vehicle. Additionally, in positive control experiments, we failed to see an effect of the 5-HT4 agonist, tegaserod, on colitis severity or colonic motility in any of the measures tested. Conclusions: In conclusion, it is unclear if the luminally restricted 5-HT4 agonist has any effect on recovery from DSS colitis. Given inconsistencies with the model and lack of an effect of tegaserod, additional studies will be required, possibly involving different doses and time points, to fully assess the actions of this luminally restricted compound in colitis recovery.
260

Klonierung und Charakterisierung aminerger Rezeptoren der Amerikanischen Schabe Periplaneta americana / Characterization of biogenic amine receptors of the american cockroach Periplaneta americana

Troppmann, Britta January 2009 (has links)
Biogene Amine sind kleine organische Verbindungen, die sowohl bei Vertebraten als auch bei Invertebraten als Neurotransmitter, Neuromodulatoren und/oder Neurohormone wirken. Sie bilden eine bedeutende Gruppe von Botenstoffen und entfalten ihre Wirkungen vornehmlich über die Bindung an G-Protein-gekoppelte Rezeptoren. Bei Insekten wurde eine Vielzahl von Wirkungen biogener Amine beschrieben. Das führte schon frühzeitig zur Vermutung, dass Insekten (u. a. Invertebraten) wie die Wirbeltiere ein diverses Repertoire an aminergen Rezeptoren besitzen. Für ein umfassendes Verständnis der komplexen physiologischen Wirkungen biogener Amine fehlten jedoch wichtige Informationen über die molekulare Identität der entsprechenden Rezeptorproteine und ihrer pharmakologischen Eigenschaften, ihre Lokalisation und ihre intrazellulären Reaktionspartner. Viele bei Schaben gut untersuchte (neuro)physiologische Prozesse sowie Verhaltensweisen werden durch Serotonin und Dopamin gesteuert bzw. moduliert. Über die beteiligten Rezeptoren ist jedoch bisher vergleichsweise wenig bekannt. Die Klonierung und Charakterisierung von Serotonin- und Dopaminrezeptoren der Amerikanischen Schabe P. americana ist damit ein längst überfälliger Schritt auf dem Weg zu einem umfassenden Verständnis der vielfältigen Wirkungen biogener Amine bei Insekten. Durch die Anwendung verschiedener Klonierungsstrategien konnten cDNAs isoliert werden, die für potentielle Serotoninrezeptoren und einen Dopaminrezeptor kodieren. Die Sequenzen weisen die größte Ähnlichkeit zu Mitgliedern der 5-HT1- und 5-HT7-Rezeptorklassen bzw. den Invertebratentyp-Dopaminrezeptoren auf. Die isolierten Rezeptoren der Amerikanischen Schabe wurden dementsprechend Pea(Periplaneta americana)5-HT1, Pea5-HT7 und PeaDop2 benannt. Das Hydropathieprofil dieser Rezeptoren postuliert das Vorhandensein der charakteristischen heptahelikalen Architektur G-Protein-gekoppelter Rezeptoren. Die abgeleiteten Aminosäuresequenzen zeigen typische Merkmale aminerger Rezeptoren. So sind Aminosäuren, die bedeutend für die Ligandenbindung, die Rezeptoraktivierung und die Kopplung an G﷓Proteine sind, in den Rezeptoren konserviert. Expressionsstudien zeigten eine auffallend hohe Expression aller drei Rezeptor-mRNAs im Gehirn sowie in den Speicheldrüsen. Im Rahmen dieser Arbeit wurden polyklonale Antikörper gegen den Pea5-HT1-Rezeptor sowie den PeaDop2-Rezeptor hergestellt. Der anti-Pea5-HT1-Antikörper detektiert im Homogenat von Schabengehirnen, Speicheldrüsen und Pea5-HT1-exprimierenden HEK 293-Zellen die glykosylierte Form des Rezeptors. In Gehirnschnitten markiert der anti-Pea5-HT1-Antikörper spezifisch einige Zellkörper in der Pars intercerebralis und deren Axone, welche in den Corpora cardiaca Nerv I projizieren. Der PeaDop2-Rezeptor wurde durch den spezifischen anti-PeaDop2-Antikörper in Neuronen mit Somata im anterioren Randbereich der Medulla nachgewiesen. Diese Neurone innervieren die optischen Loben und projizieren in das ventrolaterale Protocerebrum. Die intrazellulären Signalwege der heterolog exprimierten Pea5-HT1- und PeaDop2-Rezeptoren wurden in HEK 293-Zellen untersucht. Die Aktivierung des Pea5-HT1-Rezeptors durch Serotonin führt zur Hemmung der cAMP-Synthese. Des Weiteren wurde gezeigt, dass der Rezeptor konstitutive Aktivität besitzt. WAY 100635, ein hoch selektiver 5-HT1A-Rezeptorantagonist, wurde als wirksamer inverser Agonist am Pea5-HT1-Rezeptor identifiziert. Der stabil exprimierte PeaDop2-Rezeptor antwortet auf eine Aktivierung durch Dopamin mit einer Erhöhung der cAMP-Konzentration. Eine C-terminal trunkierte Variante dieses Rezeptors ist eigenständig nicht funktional. Die Ergebnisse der vorliegenden Arbeit indizieren, dass die untersuchten aminergen Rezeptoren im zentralen Nervensystems der Schabe an der Informationsverarbeitung beteiligt sind und verschiedene physiologische Prozesse in peripheren Organen regulieren. Mit der Klonierung und funktionellen Charakterisierung der ersten Serotoninrezeptoren und eines Dopaminrezeptors ist damit eine wichtige Grundlage für die Untersuchung ihrer Funktionen geschaffen worden. / Biogenic amines are small organic compounds that act as neurotransmitters, neuromodulators and/or neurohormones in vertebrates and in invertebrates. They form an important group of messenger substances and mediate their diverse effects primarily by binding to G protein-coupled receptors. The molecular identification as well as the functional and pharmacological characterization of these receptors is crucial for the comprehension of the intracellular signaling pathways activated by biogenic amines. This work describes the molecular and functional characterization of the first serotonin receptors and an invertebrate-type dopamine receptor of the American cockroach, Periplaneta americana. Using a PCR-strategy based on degenerate primers and RACE-PCR three cDNAs encoding for putative biogenic amine receptors were isolated from P. americana brain cDNA (Pea5-ht1, Pea5-ht7, Peadop2). The deduced amino acid sequences display major characteristics common to all G protein-coupled receptors. Primarily Distribution of receptor mRNA was investigated by RT-PCR. The analysis revealed a high mRNA expression level for all three receptors in the brain and salivary glands. The distribution of the Pea5﷓HT1 and PeaDop2 receptor proteins was analyzed by immunohistochemistry with specific affinity-purified polyclonal antibodies. Both receptor proteins are expressed in brain and salivary glands. Furthermore the cellular distribution of the receptors was investigated by immunocytochemistry on brain sections. The anti-Pea5-HT1 receptor antibody specifically labelled some large somata in the pars intercerebralis. Labeled axons of these neurons pass down the anterior surface of the brain and cross over in the chiasma region of the corpora cardiaca nerve 1. The PeaDop2 receptor was detected in neurons with somata at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to clarify the functional and pharmacological properties of the cloned receptors, we studied HEK 293 cell lines stably expressing Pea5-HT1 or PeaDop2. Activation of Pea5-HT1 expressing cells by serotonin reduced adenylyl cyclase activity in a dose-dependent manner. The Pea5-HT1 receptor was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist and WAY 100635 as an inverse agonist. The activation of the PeaDop2 receptor by dopamine induced an increase in intracellular cAMP level, whereas a C-terminally truncated splice variant of this receptor does not exhibit any functional property by itself. The results of this work suggest important roles of the investigated receptors in various areas of the cockroach brain. The molecular and pharmacological characterization of the first serotonin receptors and a dopamine receptor of the cockroach now provides the basis for forthcoming studies regarding the significance of these particular receptors for cockroach behavior and physiology

Page generated in 0.0313 seconds